Environmental Engineering and Management Journal

"Gheorghe Asachi" Technical University of lasi, Romania

LANDFILL GAS TO ENERGY CONVERSION FROM ORADEA MUNICIPAL WASTE LANDFILL IN ROMANIA

Gerardo Collaguazo^{1*}, Adrian Badea¹, Constantin Stan¹, Tiberiu Apostol¹, Gigel Paraschiv², Zoltán Pásztai³

 ¹Department of Power Engineering, Polytechnic University of Bucharest, Faculty of Power Engineering, 313 Splaiul Independentei, 060042 Bucharest, Romania
²Biotechnical Systems Engineering Faculty, University "Politehnica" of Bucharest, Bucharest, Romania
³SC ECOBihor SRL, Oradea, 327Matei Corvin Str., Oradea, Romania

Abstract

This paper presents the results of theoretical estimations of the quantity of landfill gas (LFG), as well as of the energy potential of Cell A from the municipal landfill in Oradea city, Romania, based on a mathematical model. Considering three scenarios for LFG recovery according to the capture system efficiency, the following LFG theoretical flows have been obtained: 157 m_{LFG}^3/h for 45% recovery efficiency; 209 m_{LFG}^3/h for 60% recovery efficiency; and 297 for 85% recovery efficiency, respectively. The current recovery system efficiency based on real data is about 45%. On-site measurements revealed that the LFG composition is 53% methane and 0.72% oxygen, thus, it is suitable for electrical energy generation using internal combustion engines. Consequently, by considering 35% motor-generator system efficiency and previous flows of LFG, the electric energy to be obtained is 299 kW_e, 398 kW_e, and 564 kW_e, respectively. At the same time, the electric energy of 281 kW_e has been obtained for the real data of the LFG flow of 148 m_{LFG}^3/h . Considering that the operating time is 7,446 h/yr; the energy generated for the year 2014 is 2,092 MWh_e. On the other side, from 2005 to 2030, according to the recovery system efficiency, the total electrical energy generated during this period is 40,222 MWh_e; 53,630 MWh_e and 75,975 MWh_e respectively, and the methane emissions have been estimated for about 1.53 million m_{CH4}^3 , which represents 417 thousand of tons CO₂ equivalent, which may be reduced by using LFG for producing electricity.

Key words: energy, landfill gas, mathematical models, methane emissions, solid waste

Received: February, 2015; Revised final: May, 2015; Accepted: May, 2015

^{*}Author to whom all correspondence should be addressed: e-mail: gicollaguazo@hotmail.es; Phone: +40 764 278 205