

"Gheorghe Asachi" Technical University of lasi, Romania

Fe₂O₃ – TiO₂ THIN FILMS PREPARED BY SOL-GEL METHOD

Ramona - Crina Suciu^{1*}, Marcela Corina Roșu¹, Teofil Dănuț Silipaș¹, Emil Indrea¹, Violeta Popescu², George Liviu Popescu²

¹National Institute for R&D of Isotopic and Molecular Technologies, P.O. Box 700, 400293 Cluj-Napoca, Romania ²Technical University of Cluj-Napoca, 15 C. Daicoviciu, 400020 Cluj-Napoca, Romania

Abstract

 Fe_2O_3 -doped TiO_2 photocatalysts were prepared by sol-gel method. Mixed films of TiO_2 and Fe_2O_3 were deposited on indium tin oxide (ITO) coated glass slides by spray pyrolysis using solutions that contains both tetraisopropoxides of titanium as Ti^{2+} source and $FeCl_3$ in butanol as Fe^{3+} source. The film consists on five to ten $Fe_2O_3 - TiO_2$ layers.

UV-VIS spectra were obtained both for the solutions of precursors and films before and after heat treatment. Fluorescence measurements were made for the solutions. X - ray diffraction was use for structural investigations. The morphology of the film was studied by Scanning Electron Microscopy.

Enhancement in the UV optical absorption domain of Fe₂O₃-doped TiO₂ indicates that it can be used as an efficient photocatalyst under visible light irradiation.

Key words: photocatalytic activity, sol – gel, spray pyrolysis, TiO₂

Received: September, 2010; Revised final: February, 2011; Accepted: February, 2011

⁻

^{*} Author to whom all correspondence should be addressed: e-mail: Ramona.Suciu@itim-cj.ro