Environmental Engineering and Management Journal

December 2013, Vol.12, No. 12, 2479-2488 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of lasi, Romania

EXPLOITATION OF AN ANAEROBIC UP-FLOW COLUMN REACTOR (AUFCR) USING ACTIVATED SLUDGE BIOMASS FOR THE DECOLORIZATION OF DYES AND COD REDUCTION FROM TEXTILE WASTEWATER

Anwar Ahmad*, Waleed M. Zahid

King Saud University (KSU), Department of Civil Engineering, College of Engineering, PO Box 800, Riyadh 11421, Kingdom of Saudi Arabia

Abstract

The aims of this study were to investigate the performance of anaerobic up-flow column reactor (AUFCR) and immobilized activated sludge biomass (ASB) potential for the adsorption of dye drimarene Blue-K₂RL (Db-K₂RL) and removal of chemical oxygen demand (COD) from textile wastewater (TWW). AUFCR with ASB at flow rate of 50 mL h⁻¹ and hydraulic retention time (HRT) of 10 h showed 95% dye adsorption at pH 4 and 87% COD reduction at pH 6 while non-activated sludge (NAS) showed only 60% of adsorption and 83% of COD reduction at pH 8. ASB at 100 mg L⁻¹ and 10 mg L⁻¹ of dye concentrations resulted maximum adsorption of 98% and COD reduction of 85%, while with NAS these were only 66% and 81% at 10 g L⁻¹. ASB exhibited optimum adsorption of 98% at100 mg L⁻¹ and 10 mg L⁻¹ of dye concentrations with 2 g L⁻¹ of glucose and NAS showed adsorption of 30% and COD reduction of 83% at 6 g L⁻¹ of glucose. Maximum decolorization and COD reduction capacities of ASB were 78% and 97%, respectively. Overall, ASB potential in terms of adsorption and COD reduction was far better than NAS for UAFCR. The results indicate that ASB is a sustainable technology for the adsorption of dye and COD reduction from industrial wastewater and wastewater treatment plants using UAFC reactor.

Key words: ASB and NAS, COD, decolorization, dye dB- K2RL, TWW

Received: September, 2011; Revised final: May, 2012; Accepted: June, 2012

^{*} Author to whom all correspondence should be addressed: E-mail: anwarak218@yahoo.co.uk; Phone: +966 14676927; Fax: +966 14677008