Environmental Engineering and Management Journal

September 2013, Vol. 12, No. 9, 1875-1878 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

EFFECTS OF CHLORINE IONS ON THE PHOTOELECTRO-CATALYTIC DEGRADATION OF ORGANICS USING HIGHLY ORDERED TiO₂ NANOTUBE ARRAYS

Jialing Zhang, Xuejin Li, Weiping Yin, Quanpeng Chen, Jinhua Li, Baoxue Zhou*

School of Environmental Science and Engineering Shanghai Jiaotong University No. 800 Dongchuan Rd, Shanghai 200240, China

Abstract

As a new type of photoelectrocatalytic materials, the TiO_2 nanotube arrays have drawn a lot of attention for efficiently photoelectrocatalytic organic pollutants degradation due to their highly photoelectrocatalytic properties. Yet, the performance of photoelectrocatalytic organics degradation using TiO_2 nanotube arrays electrode is influenced by CI^{-} , a kind of typical reducing material. This paper focuses on the effect of CI^{-} on the different photoelectrocatalytic performance of TiO_2 nanotube arrays electrode and TiO_2 nanoparticles film electrode as a comparison. Without organics, CI^{-} showed chemical inertness on the TiO_2 nanotube arrays electrode, different from the photocatalytic activity of CI^{-} on the TiO_2 nanotube arrays electrode. With organics, low concentration CI^{-} (0-100mg/L) hardly affected the organic degradation of TiO_2 nanotube arrays electrode, while high concentration CI^{-} (>100mg/L) obviously restrained it. The different performance between these two kinds of electrodes in photoelectrocatalytic organics degradation can be attributed to the peculiar architecture of TiO_2 nanotube arrays.

Key words: chloride, organics, photoelectrocatalytic degradation, TiO₂ nanotube

Received: August, 2012; Revised final: July, 2013; Accepted: August, 2013

^{*} Author to whom all correspondence should be addressed: E-mail: zhoubaoxue@sjtu.edu.cn; Phone/fax: +86 21 5474 7351