Environmental Engineering and Management Journal

October 2016, Vol.15, No. 10, 2239-2244 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

IMPACT OF COD:N RATIO ON N₂O EMISSIONS DURING LIVESTOCK WASTEWATER TREATMENT VIA THE NITRITE PATHWAY

Qiang Kong^{1,2}, Yu Feng^{1,2}, Yu-zhen Liu^{1,2}, Zhen Hu^{3*}

¹Institute of Environment and Ecology, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, P.R. China ²College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China ³Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China

Abstract

This study examines the impact of the chemical oxygen demand to nitrogen ratio (COD:N) on nitrous oxide (N₂O) emissions during N removal via a nitrite (NO₂⁻) pathway for synthetic livestock wastewater treatment. Based on typical cycle operations, $1.07 \pm 0.07\%$ of the incoming N load was emitted as N₂O at a COD:N ratio of 3:1. This was higher than the $0.83 \pm 0.08\%$ emitted at a COD:N ratio of 6:1. The low COD:N ratio in the synthetic livestock wastewater may thus cause increased N₂O emissions. Nitrous oxide was emitted during both aeration and non-aeration periods; however, N₂O emissions during aeration periods were much higher than during non-aeration periods. Low dissolved oxygen levels, high NO₂⁻-N concentrations and an intermittent aeration strategy were the primary factors encouraging N₂O emissions during synthetic livestock wastewater treatment via the NO₂⁻ pathway.

Key words: COD:N ratio, livestock wastewater, nitrite, nitrous oxide

Received: March, 2016; Revised final: September, 2016; Accepted: October, 2016

^{*} Author to whom all correspondence should be addressed: e-mail: huzhen885@sdu.edu.cn; Phone: +86 531 88363015; Fax: +86 531 88363015