Environmental Engineering and Management Journal

October 2016, Vol.15, No. 10, 2205-2213 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

EMISSION OF CH₄, N₂O AND NH₃ FROM VEGETABLE FIELD FERTILIZED WITH ANIMAL MANURE COMPOSTS

Zhen Ge^{1,2}, He-feng Wan^{1,3}, Jia Zhong¹, Chen-yang Zhao^{1,4}, Yuan-song Wei^{1*}, Jia-xi Zheng¹, Yu-long Wu², Sheng-hui Han^{5*}, Bo-fu Zheng²

¹Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China ²Beijing University of Civil Engineering and Architecture, Beijing 100044, China ³Nanchang University, Nanchang 330031, China ⁴Capital University of Economics and Business, Beijing 100070, China ⁵Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Greenhouse gas (GHG) emissions from vegetable land are of great concern because agricultural land is one of major sources contributing to global GHG emissions. In this study, the emission of GHG (methane, CH₄; nitrous oxide, N₂O; and ammonia, NH₃), as well as the factors affecting GHG and NH₃ emission were investigated in land planted with *Lactuca sativa L*. and treated with different animal manure composts in a greenhouse located in Beijing. Methane emission flux was significantly affected by soil temperature and humidity, and N₂O emission flux was related to soil temperature, surface temperature and humidity. The emission fluxes of CH₄, N₂O and NH₃ were mainly affected by soil moisture, but there was little relation between emissions of CH₄, N₂O, NH₃ and ambient temperature in the greenhouse. Results showed that emission factors (EFs) of CH₄ from the treatments investigated – NRM (application with swine manure compost without red mud), RM (application with swine manure compost with red mud) and CF (application with commercial organic fertilizer) – were 0.20%, 0.027% and 0.004%, respectively; EFs of N₂O from these three treatments were 0.18%, 0.63% and 0.74%, respectively, and EFs of ammonia were 2.00%, 3.98%, 2.53%, respectively.

Key words: animal manure compost, ammonia, emission factor, greenhouse gas, Lactuca sativa L

Received: March, 2016; Revised final: September, 2016; Accepted: October, 2016

^{*} Author to whom all correspondence should be addressed: e-mail: yswei@rcees.ac.cn, shenghui_han@post.iap.ac.cn; GE Zhen and WAN He-feng equally contribute to this work