Environmental Engineering and Management Journal

October 2017, Vol. 16, No. 10, 2267-2274 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

OPTIMIZATION OF OPERATIONAL CONDITIONS FOR NITRITE ACCUMULATION IN A SUBMERGED BIOFILTER

Sukru Aslan*, Erdal Simsek

Cumhuriyet University, Engineering Faculty, Department of Environmental Engineering, 58140, Sivas/Turkey

Abstract

The partial nitrification bioreactor (PNBR) was operated at a constant temperature and an influent synthetic wastewater pH of 35° C and 8.5, respectively. The effects of dissolved oxygen concentrations (DO), hydraulic retention times (HRT), and the nitrogen loading rates (NLR) on the ammonium removal efficiencies and the NO₂-N/NO_x-N ratio were investigated. The activity of nitrite oxidizing bacteria was stimulated at high DO concentrations. The highest NO₂-N/NO_x-N ratio of 0.76 was obtained at the DO concentrations of 1.9 mg/L. The NLRs and HRTs significantly affect the NO₂-N/NO_x-N ratio of 0.76 was obtained at the most of NH₄-N (98%) was oxidized at the HRT of 10.3 h, the ratio of NO₂-N/NO_x-N [NO₂-N/(NO₂-N+NO₃-N)] was too low (0.33). The removal efficiency of NH₄-N descended to 92% while the ratio of NO₂-N/NO_x-N achieved the highest level of 0.76 under the operational conditions. However, the removal efficiency of NH₄-N decreased from 94% to 92%. Further increased the NLR caused the deterioration of NH₄-N oxidation and NO₂-N/NO_x-N ratio. The stable NO₂-N production rate of about 810 g/m³.day (2.5 g/m².day) was obtained under the NLR and surface loading rate of 830 g NH₄-N /m³.day and 3.55 g/m².day, respectively.

Keywords: DO, HRT, NLR, NO2-N/NOx-N ratio, partial nitrification

Received: February, 2013; Revised final: February, 2014; Accepted: February, 2014

^{*} Author to whom all correspondence should be addressed: e-mail: saslan@cumhuriyet.edu.tr; Phone:+903462191010-1296; Fax: +903462191177