Environmental Engineering and Management Journal

February 2018, Vol.17, No. 2, 451-458 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of Iasi, Romania

COMPARISON OF PERFORMANCE OF AN EARTHEN PLATE AND NAFION AS MEMBRANE SEPARATORS IN DUAL CHAMBER MICROBIAL FUEL CELLS

Partha Sarathi Jana^{1*}, Makarand Madhao Ghangrekar², Dónal Leech¹

¹University of Tehran, Faculty of Natural Resources, Karaj, Iran ²University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, Laboratory of Ecosystem and Biodiversity Management, Greece

Abstract

The performance of microbial fuel cells (MFC) employing an earthen plate as a membrane separator is compared to that using Nafion 117 in an identical up-flow dual-chambered cylindrical cell configuration. The MFC configuration is of a cylindrical outer cathode chamber separated by the membrane from a concentric rectangular inner anode chamber. The fuel cells, operated under continuous mode at hydraulic retention time of 12 hr, achieved average chemical oxygen demand removal efficiency of 60% and 48%, for the Nafion and earthen plate separators, respectively. The microbial fuel cells based on the earthen plate separator generated slightly lower average (28%) and maximum (48%) power densities than Nafion separator which is likely due to the higher membrane resistance. The earthen plate separator is 99% cheaper than the Nafion membrane, showing promise as an alternate separator for application to MFC technology.

Key words: chemical oxygen demand, earthen plate, microbial fuel cell, power density, proton exchange membrane

Received: November, 2013; Revised final: June, 2014; Accepted: June, 2014; Published in final edited form: February 2018

^{*} Author to whom all correspondence should be addressed: e-mail: parth_jana@yahoo.co.in; Phone: +353 863272730