Environmental Engineering and Management Journal

May 2018, Vol.17, No. 5, 1267-1274 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of Iasi, Romania

OPTIMIZATION OF PHENOLIC COMPOUNDS ABATEMENT IN OLIVE MILL WASTEWATER BY FENTON'S LIKE TREATMENT WITH H₂O₂/Cu²⁺ UNDER MICROWAVE USING EXPERIMENTAL DESIGN

Hamida Iboukhoulef¹, Abdeltif Amrane^{2*}, Hocine Kadi¹

¹Laboratoire de Chimie Appliquée et Génie Chimique, Université M. Mammeri, Tizi-Ouzou, Algérie ²Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR6226, F-35000 Rennes, France

Abstract

This work describes the application of Fenton's like system (H_2O_2/Cu^{2+}) assisted by microwaves to the removal of phenolic compounds from olive mill wastewater (OMWs). The effect of various operating conditions, namely copper ion concentrations (X_1) , hydrogen peroxide (X_2) , time of irradiation (X_3) and microwave power (X_4) were evaluated by factorial design of experiments. Results showed that X_1, X_2, X_3 and X_4 had significant effects on the response followed by the interactions X_1X_2, X_1X_3, X_2X_4 and $X_1X_2X_3$. The highest degradation of phenolic compounds was found for 500 mg/L copper dose, a power of 340 W, 12 M H₂O₂ and 8 min irradiation time. FTIR analysis confirmed that microwave degradation of polyphenols by means of the Fenton-like system Cu(II)/H₂O₂ could be an efficient solution for the treatment of olive mill wastewater.

Key words: experimental design, H2O2/Cu2+, microwave, olive mill wastewater treatment, polyphenols

Received: July, 2013; Revised final: July, 2014; Accepted: July, 2014; Published in final edited form: May, 2018

^{*} Author to whom all correspondence should be addressed: e-mail: abdeltif.amrane@univ-rennes1.fr; Phone: +33 223235755; Fax: +33 223238120