Environmental Engineering and Management Journal

May 2018, Vol.17, No. 5, 1035-1041 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of Iasi, Romania

BEHAVIOUR OF OZONATION BY-PRODUCTS DURING ADVANCED DRINKING WATER TREATMENT WITH PEARL RIVER WATER

Yue Wu^{1,2,3*}, Chun-De Wu^{1,2}, Zhi-Lin Zhang^{1,2}, Fauzia Naluswata¹, Bo-Jie Yuan¹, Jia-Li Liang¹

¹College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006, China ²The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China ³Shantou Polytechnic, Shantou 515041, China

Abstract

Simulation experiments were conducted to investigate the behaviour of ozonation by-products and the removal of organic matter in the treatment of the Pearl River raw water. The treatment processes include pre-ozonation, conventional treatment processes (coagulation/sedimentation and sand filtration), post-ozonation and granular activated carbon (GAC) filtration. Treatment efficiency of each unit process was evaluated by using several parameters such as permanganate index (COD_{Mn}), ultraviolet absorbance at 254 nm (UV₂₅₄), bromate (BrO₃⁻) and formaldehyde. The overall conversion rates of BrO₃⁻ in the six water samples were $0.43 \sim 5.54$ %. Treated water flowed through the pre-ozonation unit process in which COD_{Mn} and UV₂₅₄ were greatly removed. The conventional treatment processes had poor ability to remove BrO₃⁻, but were effective in the removal of formaldehyde. In the post-ozonation unit process, the concentrations of BrO₃⁻ and formaldehyde reached the highest value. GAC filtration enhanced the removal efficiency of BrO₃⁻ compared with the conventional treatment processes. Water samples from the Xijiang and Beijiang River of the Pearl River basin contained higher concentrations of BrO₃⁻ and lower values of COD_{Mn}, UV₂₅₄ and formaldehyde in the final effluents than those from the Dongjiang River.

Key words: bromate, formaldehyde, granular activated carbon, ozone, Pearl River raw water

Received: July, 2013; Revised final: June, 2014; Accepted: July, 2014; Published in final edited form: May, 2018

^{*} Author to whom all correspondence should be addressed: e-mail: 5.yue@163.com