Environmental Engineering and Management Journal

September 2019, Vol. 18, No. 9, 2035-2044 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of Iasi, Romania

PREDICTION OF WATER QUALITY INDEX OF AN INDIAN RIVER USING ARITHMETIC INDEX AND REGRESSION MODELS

Divya Airattil Haridas¹, Soloman Pooppana Antony^{2*}

¹Environmental Engineering and Research Laboratory, Department of Chemical Engineering, Government Engineering College, Thrissur, PIN 680009, Kerala, India ²Department of Chemical Engineering, Government Engineering College, Thrissur, PIN 680009, Kerala, India

Abstract

This paper focuses on the effect of some water quality parameters of river water which helps in the calculation of water quality index (*WQI*) that culminates in the development of a regression model for prediction of *WQI* of the river system in India. The index was calculated by arithmetic index method using twelve various experimentally estimated water quality parameters such as potential hydrogen, chlorides, dissolved oxygen saturation, nitrates, sulphates, phosphates, total dissolved solids, biochemical oxygen demand, electrical conductivity, total hardness, turbidity and total coliform of the water at eight locations, for a 55 km stretch of Chalakkudy river November 2013 to December 2018. It was identified that total coliform is the major parameter contributing to the bad quality of water. Water quality regression model has been developed as a function of total coliform content. The performance of the model in predicting the *WQI* has been tested by comparing with the calculated *WQI* for the following year 2018. The regression model has been found to be good with an absolute average relative error and root mean square error values of 0.693 and 0.5 respectively. The results indicate that the basin is slowly getting into a serious drinking water crisis.

Key words: arithmetic index method, Chalakudy River, regression model, water quality index

Received: October, 2018; Revised final: March, 2019; Accepted: March, 2019; Published in final edited form: September, 2019

1. Introduction

Water pollution is a major environmental problem. Unless due attention is given and proper measures are undertaken, the situation would be worse in the future. In recent years, due to tremendous changes in the field of agriculture and industry, and increase in population, natural water systems has become perceptibly altered in several respects. Consequently, they are exposed to all local disturbances regardless of their source of occurrence (Amanatidou et al., 2018; Kido et al., 2009; Venkatesan, 2007). Significantly, improper water management leads to the inevitable water crisis in the entire world. The health of the rivers and their biological diversity will be directly related to the health of almost every component of the ecosystem (Ramesh et al., 2007). Surface water pollution with chemical, physical and biological contaminants due to anthropogenic activities is having both high risk and environmental attention (Hao et al., 2018; Nkedi et al., 2006).

Constant discharges of domestic and industrial wastewater and seasonal changes like climate and surface runoff also have an important role in the river water quality (Li et al., 2017; Shang, 2003). The increase in the supply of nutrients like phosphate, sulphates, and nitrates enhances the eutrophication process and is inversely proportional to the dissolved oxygen level of water. Algal bloom also releases some toxic chemicals which adversely affect fish and other aquatic life and makes the water body stink. The local fisherman who was in the habit of using dynamites for catching fish added to the gravity of this situation. As

^{*} Author to whom all correspondence should be addressed: e-mail: pasolomon@gmail.com

a case study, Chalakudy river in India turned out to be a typical example of deteriorating water quality.

Water quality index (WQI) can be used as a good tool to convert the complex data into a simple and understandable tool making it feasible for the public to rely upon. WQI is a single measure of overall water quality in a specific location with a special emphasis on the time-based readings of water quality parameters (Singh et al., 2013; Taseli, 2017). Similar types of studies related to WQI have been conducted in India (Chowdhary et al., 2012; Pathak et al., 2015; Vineeta Kumari et al., 2015). Water quality river models such as artificial neural network model (ANN), extreme learning machine model (ELM) and support vector regression model (SVR) were reviewed (Alizadeh et al., 2015). Viewed from this perspective, water quality monitoring and analysis of water quality index are remarkable steps in the process of managing and conserving the entire ecosystem (Smerjit Kaur and Sindhu Singh, 2012).

Chalakudy river is one of the longest rivers in Kerala, India and the longest one in Thrissur district, having a length of 145.5 km with a total drainage area of 1704 sq km, out of which 1404 sq km is in Kerala and the rest 300 sq km happened to be in Coimbatore district of Tamil Nadu. It originates from the Anamalais and Nelliampathy ranges of the Western Ghats. In Kerala, it flows westward through Palakkad, Thrissur, and Ernakulam districts. A major portion lies in the Thrissur district (Maya and Seralathan, 2005).

The present study area covers 55 km i.e. 38% of the total river length, starting from Vazhachal, situated 400m above sea level and ending at

palapuzhakadavu at Sea level. Refer to the map given in Fig. 1. Eight sampling sites are selected from the upstream to downstream of the river, as detailed in Table 1.

The study mainly focuses on the following objectives:

• develop the *WQI* model by arithmetic index method for the assessment of the pollution load of Chalakudy river based on actual experimental data.

• develop the regression model as a function of total coliform content for predicting *WQI* of Chalakudy river.

• validate the regression *WQI* model by comparing with the calculated *WQI* for the following year 2018.

2. Material and methods

2.1. Sample collection

Water samples were collected from eight selected stations (Table 1) of Chalakudy River from November 2013 to October 2018, once in a month, using the grab sampling method. Samples were collected in 1000 ml HDPE bottles for determination of all the parameters except biochemical oxygen demand (BOD), total coliform (TC) and dissolved oxygen (DO). The sample bottles were rinsed with 1M HCl and then with distilled water. The bottles were also rinsed thrice with water sample before collection. The collected samples were capped tightly and placed in a cooler box with ice for transportation to the laboratory.

Fig. 1. Chalakudy River basin map

site	Place	Activity	longitude and latitude
Ι	Vazhachal	tourist spot, forest division	10°17'18.34N-76°31'42.18E
II	Vettilappara	the water theme park, agricultural area	10°17'33.86N-76°28'39.32E
III	Kanjirappilly	paper mill (Presently not working)	10°18'14.59N-76°23'48.29E
IV	Pariyaram	bathing, Skol breweries	10°17'31.65N-76°21'26.06E
V	Chalakudy	major town, KWA pumping station	10°17'41.04N-76°20'11.06E
VI	Vynthala	KWA drinking water pumping station with	10°11'33.75N-76°20'07.24E
		Treatment plant.	
VII	Pulikkakadavu	downstream of DCP plant	10°14'01.75N-76°19'53.29E
VIII	Palapuzhakadavu	bathing, residential area, agriculture area	10°14'01.75N-76°20'10.96E

Table 1. Sampling stations

For TC, BOD and DO, sterilized sample bottles were filled along the sides of the bottle carefully up to the brim, without trapping the air inside (Haider and Waris, 2013). DO has been fixed using manganese sulphate and alkali iodide azide and capped. The samples were stored in a refrigerator at 4°C immediately upon arrival at the laboratory.

2.2. Analytical methods

All the water quality parameters were analyzed by the standard procedures of the American Public Health Association (APHA, 2012).

2.3. Water Quality Index (WQI) calculation

WQI was calculated by arithmetic index method using twelve physicochemical parameters. There are various versions of the method reported by different researchers (Rao, 2011). In most of the *WQI* model development methods use of various subindex formulae for the range of constituent water quality variables are very essential (Gazzaz et al., 2012). DO is a very important parameter in WQI calculation (Zhang et al., 2017).

Eqs. (1-4) are used to calculate WQI by arithmetic index method.

$$WQI = \sum qnwn \tag{1}$$

Water quality rating (q_n) of each parameter is calculated using Eq. (2):

$$qn = \frac{100 * (Vn - Vi)}{(Vs - Vi)}$$
(2)

Here Vn is the observed value of the nth parameter, Vs is the standard value of each parameter and Vi is the ideal value of the nth parameter. All the ideal values except pH and DO are taken as zero. Ideal value for pH=7, and for % *DO saturation=100*. If qn = 0, it indicates the complete absence of pollutants. While $0 < q_i < 100$ implies that the pollutants are within the prescribed standard. When $q_i > 100$, it means that the pollutants are above the standard (Mohanty, 2014).

The unit weight is given by Eq. (3):

$$Wn = \frac{K}{Vs} \tag{3}$$

where

$$K = \frac{1}{\frac{1}{V_{s1}} + \frac{1}{V_{s2}} + \frac{1}{V_{s3}} + \frac{1}{V_{s4}} \dots + \frac{1}{V_{sn}}}$$
(4)

The method of calculation of *WQI* by considering the TC standard limit as 50 CFU/100 mL and 10 CFU/100 mL respectively as shown in Tables 2-3.

2.4. Classification of river water according to the WQI

Quality of river water is classified in to five groups as 'Excellent', 'Good', 'Poor', 'Very poor' and 'Not suitable for drinking' as per the classification is shown in Table 6 (Ramakrishnaiah et al., 2009).

2.5. Data Analysis

All the data were initially arranged and consolidated such as year, site, month, season, type, parameter, and value. Pivot table analysis of *Microsoft Excel* was used to process the necessary combinations of data from the entire data table. Calculation of water quality index by the arithmetic method and development of regression model was performed using *Microsoft Excel*. Two-way analysis of variance (ANOVA) and Tukey post-hoc analysis were performed with *Minitab 17* statistical software.

2.6. Regression Model

Two sets of data, $WQI(_{at TC \ limit \ as \ 10 \ CFU/100mL})$ and $WQI_{(at \ TC \ limit \ as \ 50 \ CFU/100mL})$ calculated using the arithmetic index were used to develop the linear regression model of WQI in terms of TC (Eqs. 5-6). The ability of the regression models in predicting the WQI was tested using average absolute relative error and root mean square error.

Average absolute relative error is given by Eq. (5):

$$AARE\% = \sum_{i=0}^{n} \frac{(Ei - Pi)}{Ei} \times 100$$
(5)

Danamatana	Rar	ıge	1/1/2	Unit	Observed	*****
Furameters	limit	best	1/ VS	Weight(Wn)	value	wn·Qn
BOD, mg/L	3	0	0.333	0.3714	1.88	23.274
Chlorides, mg/L	250	0	0.004	0.0045	22	0.039
DO saturation, %	50	100	0.020	0.0223	63	1.649
Electrical Conductivity, µmhos/cm	300	0	0.003	0.0037	69	0.085
Nitrates, mg/L	45	0	0.022	0.0248	0.56	0.031
pH	8.5	7	0.118	0.1311	6.4	5.243
Phosphates, mg/L	6	0	0.167	0.1857	6.7	20.736
Sulphates, mg/L	200	0	0.005	0.0056	1.05	0.003
Total Coliform CFU/100mL	50	0	0.020	0.0223	50	2.228
Total Dissolved Solids, mg/L	500	0	0.002	0.0022	56	0.025
Total hardness as CaCO ₃ , mg/L	200	0	0.003	0.0037	49	0.061
Turbidity NTU	5	0	0.200	0.2228	0.67	2.986
			0.898	1.00		56.33
		K=	1.114			

Table 2. WQI calculation by arithmetic method considering standard TC limit as 50 CFU/100mL

Table 3. WQI calculation by arithmetic method considering standard TC limit as 10 CFU/100ml

Parameters	Range		1/Vs	Unit	Observed	ww*On
1 urumeters	limit	best	1/ / 5	Weight(Wn)	value	wn×Qn
BOD, mg/L	3	0	0.333	0.3410	1.88	21.369
Chlorides, mg/L	250	0	0.004	0.0041	22	0.036
DO saturation, %	50	100	0.020	0.0205	63	1.514
Electrical Conductivity, µmhos/cm	300	0	0.003	0.0034	69	0.078
Nitrates mg/L	45	0	0.022	0.0227	0.56	0.028
pH	8.5	7	0.118	0.1204	6.4	4.814
Phosphates, mg/L	6	0	0.167	0.1705	6.7	19.039
Sulphates, mg/L	200	0	0.005	0.0051	1.05	0.003
Total Coliform CFU/100mL	10	0	0.100	0.1023	50	51.149
Total Dissolved Solids, mg/L	500	0	0.002	0.0020	56	0.023
Total hardness as CaCO ₃ , mg/L	200	0	0.003	0.0034	49	0.056
Turbidity NTU	5	0	0.200	0.2046	0.67	2.742
			0.978	1.00		100.85
		K=	1.023			

Root mean square error is calculated by Eq. (6).

$$RMSE = \left[\frac{1}{n}\sum_{i=0}^{n}\frac{(Ei-Pi)}{Ei}\right]$$
(6)

where: E_i is experimental, P_i is the predicted value obtained from the regression model.

3. Results and discussion

The values of WQI calculated using arithmetic index method is shown in Table 4. The range of values with a mean and standard deviation of WQI at each site are shown in Table 5. WQI of Chalakudy River is found to be between 166 to 4745 and 47 to 996 considering *TC* standard value as 10 CFU/100mL and 50 CFU/100 respectively. As per the classification shown in Table 6, most of the samples lie within the class 'not suitable for drinking purpose'. This is mostly due to the presence of high values of TC. Most of the parameters analyzed in the river water samples were found to be within the permissible limits according to the drinking water standards. Vazhachal, Vettilappra and Pariyaram sites were found to be having less *TC* contamination as compared with Chalakudy, Vynthala, Pulikkakadavu and Palapuzhakadavu sites with a lower mean values of *WQI*.

Two-way analysis of variance (ANOVA) of WQI is shown in Table 7. Prior to analysis, data were checked for normality. The P value for the site was obtained as 0.001 (P < 0.05) and season 0.212. It means the site is statistically significant with the WQI and season is insignificant.

The impact of urbanization-flats, hotels, waste from a cattle farm, poultry farms, thickly populated human stay situated very close to the river resulted in an adverse effect on the water quality. This leads to the inference of load of pollution in Chalakudy site, specifically due to the influence of untreated sewage discharge from the nearby area. The Tukey post hoc analysis revealed that Chalakudy and Palapuzhakadavu are the sites statistically different from others in terms of WQI. The behavior is visible in Fig. 2 also. The marked increase in the WQI values in these sites is due to the presence of high concentration of coliform bacteria.

Month& Year	Vazhachal	Vettilappara	Pariyaram	Chalakudy	Vynthala	Pulikkakadavu	Palapuzakadavu
				2013			
Nov	276	925	1148	485	1121	412	852
Dec	836	898	710	1365	1123	516	930
Ion	651	025	400	2014	165	1048	1224
Feb	556	534	490	881	294	750	1224
Mar	166	259	611	442	652	655	354
Apr	1182	803	955	234	1349	1116	489
May	983	620	855	1229	1305	408	709
Jun	926	650	1462	1131	1036	755	1170
Jul	1206	765	1078	697	1237	994	346
Aug	649	791	623	1282	1072	367	493
Sep	635	611	1376	1525	647	1231	863
Oct	1282	907	1205	479	1237	1017	612
Nov	827	1056	863	1441	1198	668	725
Dec	889	981	1804	1388	1145	1602	1030
		I.	I.	2015	•		1
Jan	1052	726	952	662	909	1135	1227
Feb	455	556	1393	1220	735	961	828
Mar	653	1225	224	1107	1391	611	458
Apr	613	669	552	1706	1228	1537	1811
May	172	195	785	1497	437	1379	1254
Jun	755	1098	756	1129	1180	527	1423
Jul	1275	1482	1253	1003	1533	1225	1191
Aug	534	292	470	426	254	244	312
Sep	1642	1211	415	565	1077	1020	832
Oct	1018	1282	833	1126	1196	423	945
Nov	702	1009	1048	1115	1296	1191	1036
Dec	637	708	279	1112	230	179	1207
				2016			
Jan	618	1518	707	1300	975	500	742
Feb	1156	11/8	840	2278	/89	/08	2008
Mar	1006	689	204	1949	918	979	065
Apr	512	491	547	2021	1740	1826	903
Iun	509	1092	882	681	271	551	702
Jul	438	388	1133	1295	395	580	987
Aug	740	769	507	957	557	598	649
Sep	878	848	658	534	581	984	681
Oct	978	888	691	938	759	770	426
Nov	484	725	360	1195	707	745	1004
Dec	992	646	636	846	714	1642	1143
		•	•	2017	•		
Jan	756	907	927	1624	633	1570	1735
Feb	1494	751	1887	669	574	853	1833
Mar	1210	202	891	2217	2036	1869	2233
Apr	807	638	486	1570	583	1841	1767
May	887	436	822	1676	971	1810	2373
Jun	257	521	504	720	663	866	616
Jul	195	433	667	394	606	643	619
Aug	/09	<u>814</u>	435	802	928	1011	208
Sep	012 506	510 1012	/12	893	8/2	352 1571	9/5
Nov	/32	305	300 1127	1300	1203	572	000
Dec	75/	787	516	956	5/9	602	660
	1.57	101	510	2018	577	002	000
Jan	880	804	736	1502	1988	2219	1929
Feb	883	580	1057	1380	768	792	1778
Mar	288	647	1002	2370	1227	2320	3693
Apr	771	549	608	1123	512	758	546
May	980	1153	475	1174	2306	526	1395
Sep	2245	2622	3498	4484	4365	4543	4745
Oct	2609	2613	2864	3604	2619	2868	2997

Table 4. WQI (at TC limit 10 CFU/100ml) of the sites from November. 2013 to October. 2018 by arithmetic index method

Haridas and Antony/Environmental Engineering and Management Journal 18 (2019), 9, 2035-2044

	WQI	Mainly contributing			
Sites	Mean	SD	Max	Mini	by
Vazhachal	819.39	445.5	2609	166	TC
Vettilappara	838.54	451.6	2622	195	TC
Kanjirappilly	931.68	545.9	3254	221	TC
Pariyaram	901.75	566.4	3498	224	TC, TH
Chalakudy	1225.72	738	4484	234	TC, BOD, TH
Vynthala	1024.05	671.5	4365	230	TC, BOD
Pulikkakadavu	1057.9	728.5	4543	179	TC, BOD
Palapuzhakadavu	1216	814.6	4745	312	TC, BOD

Table 5. The maximum, minimum and mean ±SD values of each site

	1225.72	738	4484	234	TC,
	1024.05	671.5	4365	230	TC
/u	1057.9	728.5	4543	179	TC
davu	1216	814.6	4745	312	TC

Table 6. Water quality classification based on WQI values

The range of WOI Value	Water quality	Number of water samples			
The lange of WQI value	water quality	TC limit 10 CFU/100mL	TC limit 50 CFU/100mL		
WQI < 50	Excellent	0	1		
50 < WQI <100	Good	0	40		
100 < WQI <200	Poor	5	209		
200 <wqi <300<="" td=""><td>Very Poor</td><td>15</td><td>135</td></wqi>	Very Poor	15	135		
WQI >300	Not suitable for drinking	436	71		

Fig. 2. Mean value plot of WQI by two way ANOVA

Fable 7	7.	Two	way	ANOVA	result
---------	----	-----	-----	-------	--------

Source	DF	Adj SS	Adj MS	F- Value	P-Value
Site	7	10209959	1458566	3.93	0.001
season	2	959882	479941	1.29	0.276
Site * season	14	3587578	256256	0.69	0.785
Error	432	160423302	371350		
Total	455	1755062433			

The spatial and temporal variations of WQI is shown in Fig. 3. The highest WQI values of 4454, 4543, 4745 and 4365 were noticed at Chalakudy, Pulikkakadavu, Palapuzhakadavu, and Vynthala sites respectively during September 2018. This may be the after effect of the flood in the river during August 2018. After the flood in Kerala, the water level in the river had drastically decreased. This resulted in a high level of deterioration of water quality. It was observed that the poor water quality of the river water surely due to the high concentration of total coliform. BOD, pH, and TH are also affecting the water quality but not to a greater extent as caused by the TC. Sometimes at Palapuzhakadavu and Pulikkakadavu sites, shows deviations from standard values. Also, the same sites were found to have high values of TC and BOD. The resultant changes in water quality might be attributed to the influence of anthropogenic sources like domestic sewage effluent and settling after the runoff. Specifically, this area is residential and agricultural. The least value for pH (4.2) and DO (5.1) were observed at Kanjirappilly site during 2016. It may be attributed to the leachate from the settled sludge from the pulp and paper industry. All the other parameter analysed except the above were found to be within Indian standard and WHO standard.

A flourishing Dicalcium Phosphate industry located near the river is directly discharging its treated effluent into the river. Contaminants may be also carried in through one small stream called Perumthodu, which meets Chalakudy River almost a fewmeters upstream of Pulikakadavu site. Though the industry has well-established ETP with online monitoring meters and ensures the quality of effluent discharge, still effluent discharge to the river at this area may have turned harmful to the quality of water. The maximum seasonal average of pH is 7.2. Most of the values of water pH are within the permissible limit. It is specified that pH range 6.7 to 8.4 is very essential for the growth of aquatic biota. pH values of most of the samples were within the pH range assigned by Indian standard for drinking water (IS, 2012) (6.5 -8.5).

As shown in Table 6, according to the classification already given, the water quality of the Vazhachal and Vettilappara site had displayed comparatively less biological pollution because of the freshwater availability due to the high rainfall in the forest area and high level of DO during winter and monsoon. During some season it was also noticed that water samples collected from this site contained the presence of nitrates and phosphates. This may be from natural sources like rocky surface and land drainage (Johnes and Burt, 1993). Moreover, the study indicates that the most affected parameter on WQI is

the presence of a high value of TC throughout the period of study. Chalakudy and Palapuzhakadavu sites were found to have the worst water quality due to the high contamination of coliform bacteria.

For all seasons Vynthala site was found to show a mean WQI above 1000. Pallithodu is a natural water source through which the excess rainwater reaches Parayanthodu which flows from Chalakudy town area. Therefore, there are all possibilities that a portion of the untreated sewage wastes reach the river through Pallithodu which reaches Parayanthodu, which ultimately joins the river about 1 km upstream of Njaralakadavu at the Vynthala site. This may in effect deteriorate the water quality and affects the biodiversity of the Chalakkudy River (Chattopadhyay et al., 2005). Also, this might turn harmful to the two major drinking water pumping stations that are located near Vynthala site which caters the purpose of domestic supply for more than ten local bodies. At this site, KWA treatment plant having 26.1 Million Cubic Meter capacity is also functioning.

Moreover, during the period of study, *TC* values of the river water were not found to comply with the permissible standards (absent or less than 10 CFU/100mL, or 50CFU/100 mL in the absence of alternate source). Remarkably all other values used for computing *WQI* except *TC*, at all the sites, were found to be within the permitted standards meant for human consumption But *TC* is an essential and important parameter for the drinking water quality assessment of human concern because this parameter is an indication of disease-causing pathogens.

On moving downstream, the water quality of the Chalakudy River varied and became terribly poor based on the drinking water quality assessment. But at the same time, due to a comparatively good flow of fresh water in the river during monsoon, the rate of dilution of wastes will also was high.

Fig. 3. Temporal and spatial variations of WQI

Evidently, the distillery industry located in Pariyaram and DCP plant at the Pulikkakadavu site did not contribute much pollution in to the river. But, the presence of some organochlorine pesticides residue was noticed in the bottom sediment of Paraiyaram site (Divya and Soloman, 2018). The linear regression model of the WQI of Chalakudy River is shown in Fig. 4 and Fig. 5. The regression analysis gives the following model equations Eqs. (7, 8) with the value coefficient of regression \mathbb{R}^2 . This gives the relationship between WQI and TC of the Chalakudy River.

$WQI_{(at TC50 CFU/100ml)} = 0.253 * TC + 18.53$, with R²=0.993 (7)

 $WQI_{(at TC10 CFU/100ml)} = 1.240 * TC + 18.45$, with R²=0.999 (8)

Fig. 4. The regression model of *WQI* by considering TC limit as 10 CFU/100mL

Fig. 5. The regression model of *WQI* by considering TC limit as 50 CFU/100mL

The closeness of the arithmetic index value of WQI (at TC standard 10 CFU/100mL) and WQI (at TC standard 50 CFU/100mL) with the predicted value of WQI using regression equations Eq. (7) and Eq. (8) is shown in Table 8. The performance of the two models in predicting the WQI has been tested by comparing with the data available for the year 2018 and found to be significantly good with an absolute average relative error (AARE) and root mean square error (RMSE) of 0.693 and 0.5 respectively for the first model. In the

case of the second model also the AARE and RMSE values are fairly good, 1 and 0.028 respectively.

4. Conclusions

Identification of WQI is an essential step to monitor, prevent and reduce water pollution. Water quality index using twelve important physicochemical factors at eight locations stretching 55 km from Vazhachal to Palapuzhakadavu of Chalakudy River has been estimated experimentally for a period from November 2014 to October 2018. WOI models have been developed in two approaches such as arithmetic index method and linear regression model using Microsoft Excel. WQI (at TC limit 10 CFU/100ml) values and WQI (at TC limit 50 CFU/100 ml) ranges from 166 to 4745 and 47 to 996 respectively. The water of none of the sampling stations was found fit for direct human consumption because of the contamination due to TC. Two-way analysis of variance shows that spacial influences are statistically significant for the WQI. Most of the other parameters analyzed during the period of study complied with the drinking water quality specifications. The results indicate that water from this river is suitable for irrigation and not suitable for drinking and bathing. So highest priority should be given to conventional treatment along with disinfection before the distribution of water to the public. Direct consumption may lead to severe water born diseases in the basin.

The performance of the regression models was tested by comparing with calculated values of WQI during the following year 2018 and found that the models are performing very good with AARE 0.693 and RMSE 0.5. Thus, the regression model and the arithmetic index model are reliable and effective models which can be used as a yardstick for measuring the approximate value of WQI of this river. By knowing the WQI, proper remedial measures can be taken for healthy water management system.

Acknowledgments

The authors would like to express their sincere gratitude to the Higher Education Department and Directorate of Technical Education, Government of Kerala for financial support.

References

- Amanatidou E., Trikilidou E., Pekridis G., Samiotis G., Tsikritzis L., Taousanidis N., Karapanos S., (2018), Pollution sources in water of young reservoirs - case of Ilarion hydroelectric dam, Greece, *Environmental Engineering and Management Journal*, **17**, 2083-2095.
- APHA, (2012), Standard Methods for the Examination of Water and Wastewater, 22nd Edition, American Public Health Association, Washington DC, https://store.awwa.org.
- Alizadeh M.J., Kavianpour M.R., (2015), Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean, *Marine Pollution Bulletin*, **98**, 171-178.

TC CFU/100mL	WQI (TC limit 10 CFU.100mL)	Predicted WQI	WQI (TC limit 50 CFU.100mL)	Predicted WQI
700	880	886.45	190	195.55
630	804	799.65	183	177.84
560	717	712.85	164	160.13
1200	1502	1506.45	318	322.05
1780	2219	2225.65	463	468.79
1530	1929	1915.65	419	405.54
1590	1988	1990.05	419	420.72
700	883	886.45	192	195.55
450	580	576.45	136	132.3
1010	1258	1270.85	261	273.98
820	1057	1035.25	248	225.91
1100	1380	1382.45	294	296.75
610	792	774.85	190	172.78
1400	1778	1754.45	396	372.65
600	768	762.45	176	170.25
210	288	278.85	80	71.58
490	647	626.05	163	142.42
1200	1499	1506.45	315	322.05
790	1002	998.05	223	218.32
1900	2370	2374.45	496	499.15
1800	2320	2250.45	544	473.85
2900	3693	3614.45	832	752.15
940	1227	1184.05	299	256.27
610	7/1	774.85	169	172.78
420	549	539.25	134	124.71
510	654	650.85	151	147.48
470	608	601.25	144	137.36
890	1123	1122.05	245	243.62
590	758	750.05	1/6	167.72
390	546	502.05	161	117.12
400	512	514.45	211	119.65
/80	980	985.65	211	215.79
900	701	1134.45	203	246.15
230	/01	0/5.05	1/8	152.54
370	4/5	477.25	256	252.74
930	526	514.45	250	253.74
400	1205	J14.4J 1292.45	151	206.75
1100	2206	1562.45	<u> </u>	290.73
1830	2300	2512.45	481	480.3
2100	2243	2230.43	409	4/3.83 540.75
2100	2022	2022.43	530	549.75
2000	3234	3242.43	735	726.85
2600	3498	3490.43	032	020.25
3640	4464	4482.43	952	030 37
3800	4545	4332.03	952	939.37
3600	4/4J /265	4/30.43	990 012	919.00
2100	4303 2600	4550.45	527	5/0 75
2100	2009	2622.45	5/2	540.75
2100	3108	2022.45	642	650.05
2300	2864	2870.45	595	600 35
2300	3604	3614 45	743	752.15
2300	2868	2870.45	599	600 35
2300	2997	2994.45	629	625.65
2100	2619	2622.45	.547	549.75

Table 8. The closeness of calculated value with the predicted value of WQI

Chattopadhyay S., Rani L.A., Sangeetha P.V., (2005), Water quality variations as linked to land use pattern: a case study in Chalakudy river basin, Kerala, *Current Science*, 2163-2169. Divya A.H., Soloman P.A., (2018), Assessment of water and sediment quality of river in India, with special reference to pesticide contamination, a case study, *International Journal of Engineering and Technology*, **7**, 97-100.

- Gazzaz N.M., Yusoff M.K., Aris A.Z., Juahir H., Ramli M.F., (2012), Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors, *Marine Pollution Bulletin*, 64, 2409-2420.
- Haider H., Waris Al., (2013), A review of dissolved oxygen and biochemical oxygen demands models for large rivers, *Pakistan Journal of Engineering and Applied Sciences*, **12**, 127-142.
- Hao X.P., Zhao C.S., Liu C.M., Yu J.J., Mitrovic S.M., (2018), Assessment of water related ecological security under changing environment in China, *Environmental Engineering and Management Journal*, **17**, 1399-1410.
- IS, (2012), Indian Standard Drinking Water-Specification (Second Revision), IS 10500:2012, Bureau of Indian Standards, New Delhi, India.
- Johnes P.J., Burt T.P., (1993), Nitrate in Surface Waters, In: Nitrate, Processes, Patterns and Management, Burt T.P., Heathwaite A.L., Trudgill S.T. (Eds.), Wiley, Chichester, UK, 269-317.
- Kido M., Syawal Y.S., Lucasri M.S., Hosokwa., Tanka. S., Saito., Wakurna J., Kurasaki M., (2009), Water quality of rivers in Indonesia and Japan, *Environmental Monitoring and Assessment*, **156**, 317-329.
- Li R.H., Wu Z.Q., Li L., Cai D.S., Wang F.Q., Huang L., (2017), Pollution load and ecological replenishment plan of Lijiang River, China, *Environmental Engineering and Management Journal*, 16, 2589-2598.
- Maya K., Seralathan P., (2005), *Studies on the nature and chemistry of sediments and water of Periyar and Chalakudy rivers, Kerala, India, PhD thesis, Department of Marine Geology and Geophysics CUSAT, Ernakulam.*

- Pathak S.K., Prasad S., Pathak T., (2015), Determination of water quality index river Bhagirathi in Uttarkashi, Uttarakhand, India, *International Journal of Research Granthaalayah*, 3, 1-7.
- Ramakrishnaiah C.R., Sadashivaiah C., Ranganna G., (2009), Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India, *Journal of Chemistry*, 6, 523-530.
- Ramesh M., Saravana M. G Pradeepa., (2007), Studies on physicochemical characteristics on the Smgallunar lake, Coimbatore, South India, A national seminar on Limnol, Maharana Pratap University of Agria, India.
- Rao S., (2011), Determination of Water Quality Index of Some Areas In Guntur District Andhra Pradesh, PhD Thesis, Acharya Nagarjuna University.
- Yu S., Shang J., Zhao J., Guo H., (2003), Factor analysis and dynamics of water quality of Sigtuna river northeast China, *Water, Air, and Soil Pollution*, **144**, 159-169.
- Singh P., Tiwari A.K., Mahotra M., (2013), Qualitative assessment of surface water of west Bokaro Coalfield, Jharkhand by using water quality index method, *International Journal of ChemTech Research*, 5, 2351-2356.
- Taseli B.K., (2017), Influence of channel traffic and Koycegiz Lake on the water quality of Dalyan channel network, *Environmental Engineering and Management Journal*, 16, 2755-2765.
- Venkatesan J., (2007), Protecting Wetlands, Current Science, 93, 288-290.
- Zhang L., Zou Z., Shan W., (2017), Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China, *Journal of Environmental Sciences*, **56**, 240-246.