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Abstract 
 
In the wake of advance industrialization, the intensive growth of modern textile production and inappropriate wastewater treatment 
strategies have led to the release of noxious and carcinogenic contaminants like azo dyes directly or indirectly into the environment. 
Therefore, to ensure the protection of the humankind and natural bionetwork, cost-effective and efficiently regulated control 
measures are necessary. On this account, recent developments in biotechnology and microbiology have driven bioremediation of 
azo dyes using white rot fungi (WRF), which is a prospective option compared to conventional methods. These specially adopted 
microbes reductively cleave the azo group. This review has been carried out to address the bio-remedial capabilities of WRF in 
textile wastewater treatment by evaluating their typical attributes and performance. Furthermore, it emphasizes on the recent 
obstacles and future outlook for the abatement of azo dyes via advanced strains of WRF.   
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1. Introduction 
 

Over the past few years, owing to the 
threatening escalation of water pollution, the typical 
researches have started giving prime attention towards 
maintenance and management of water quality. The 
textile industries are adding to world’s one-fifth of the 
industrial water contamination as they are one of the 
fastest growing industrial sectors on the globe (Lu, 
2016). Although, pollutants may be emitted at each 
step of this industry chain, the processing operations 
like desizing, scouring, bleaching, dyeing, finishing 
and printing, possesses serious threats because of huge 
water demand as well as enormous wastewater 
production (Bhatia et al., 2017; Holkar et al., 2016). 
The effluent is excessively polluted with elevated 
BOD/COD ratio and total dissolved solids (Singare, 
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2019). Almost over 10,000 types of dyes and pigments 
are being used up by the textile industries, and a 
production of 7x105 tons is annually produced 
(Ogugbue and Sawidis, 2011). Furthermore, it has 
been assessed that during the dyeing operations, 10-
15% of dyes utilized in textile industries are being 
deposited in water effluents (da Silva Leite et al., 
2016; Li et al., 2017).  

Amongst the various dyes available for 
coloring cellulosic fibres, azo dyes are the broadest 
class of synthetic aromatic dyes which are stated to be 
the substantially predominant products (constituting 
>50% of all organic dyes produced) in the industrial 
effluents (Brüschweiler and Merlot, 2017). Azo dyes 
are synthetic organo-colorants that can be identified by 
the presence of one or more chromophoric azo 
(−N=N−) groups. The proclivity of textile industries 
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for azo dyes is owing to their remunerative attributes: 
easy and cost efficient synthetic process in contrast to 
the natural dyes, its effortless application, high molar 
extinction coefficient, high photolytic resistance, huge 
structural diversity, access to numerous radiant shades, 
strong cohesion to textile fibers and energy efficiency 
(Bafana et al., 2011; Brüschweiler and Merlot, 2017; 
Seesuriyachan et al., 2007). The lack of efficient 
elimination methods of azo dyes from the textile 
effluents may prompt contamination of the water 
resources. Azo dyes can be threatening to marine life 
by obstructing their normal photosynthetic processes 
(Lavanya et al., 2014) as well as terrestrial organisms 
including humans (Balakrishnan et al., 2016; Chequer 
et al., 2015; Du et al., 2015; Fernandes et al., 2015; 
Gadaleta et al., 2016; Ooka et al., 2016; Zanoni et al., 
2013).  

The azo dyes have harmful effects from their 
own action or aryl amine derivatives produced in the 
course of reductive biotransformation of azo bond. 
The chromophoric azo group (−N=N−) in the anionic 
and non-ionic dyes have been found to follow the 
course of reaction to undergo reductive cleavage 
(Xiang et al., 2016) (Eq. 1):  

 

𝑅 𝑁 𝑁 𝑅 4e∓ 4𝐻→𝑅 𝑁H  R 𝑁𝐻                     (1) 
 

For instance, if N-hydroxylamines are formed 
in the due course of azo bond cleavage, then it could 
quite possibly lead to DNA damage (Arlt, 2002; de 
Aragão Umbuzeiro et al., 2005). And because of 
their highly stable aromatic structures and strong 
tendencies towards aerobic conditions, the 
elimination rate of dyes at primary and secondary 
treatment phases of wastewater plants is 
insignificant. This creates easy carry-over of dye 
pollutants to water bodies, leading to bio-
magnification in sediments and soil, resulting in 
contamination of ground water table (Salter-Blanc et 
al., 2016; Xiang et al., 2016). On this account, 
substantial research on both transitory and prolonged 
noxious aftermath of dyes on mankind and natural 
ecology, have been carried out (Long et al., 2017; 
Shabbir et al., 2017). In the attempt to prevent such 
threat, the surveillance and management of the 
acutely toxic and perilous dye pollutants is a major 
necessity. 

Therefore, to decrease the pollutant 
generation, minimize fresh water consumption, and 
reuse of the effluent, it is essential to reprocess the 
wastewater containing dyes in a loop within the 
manufacturing unit (Ribeiro et al., 2017). On the 
above context, different physicochemical and 
biological techniques have been introduced by the 
researchers to remove dyes from textile wastewater 
(Morin-Crini et al., 2018; Yagub et al., 2014). But 
amongst all, biological method has been identified as 
a main prospective option for dyes removal, on the 
account of less sludge production, ecological 
viability, cost effectiveness and efficient 
detoxification of effluent (Ghosh et al., 2017; Ito et 
al., 2016).  

In this treatment, microorganisms play a 
crucial role in mineralization of xenobiotic organic 
compounds. In addition, they have drawn interest 
towards textile dye remediation and detoxification 
because of their natural enzymatic mechanisms 
(Aljeboree et al., 2017; Durán and Esposito, 2000). 
The most implemented microorganisms are bacteria 
and fungi (Bafana et al., 2009; Chan et al., 2012; 
Fernando et al., 2014; Franciscon et al., 2009; He et 
al., 2004; Kalme et al., 2007; Kalyani et al., 2009; 
Nouren et al., 2017; Qu et al., 2012; Saratale et al., 
2009; 2013; Tan et al., 2013, 2014, 2016; Wang et 
al., 2017). Even though, bacteria can eliminate azo 
dyes by breakdown of azo (−N=N−) linkage using 
specific azo-reductase, there is a high possibility for 
production of harmful and carcinogenic aromatic 
aryl amines as end products (Dawkar et al., 2009; 
Spadaro et al., 1992).  

Furthermore, the degradation products when 
exposed to oxygen can quite possibly replace color 
to the effluent. In the other way around, fungi have 
(a) high tolerance to dye toxicity (Pinedo-Rivilla et 
al., 2009), (b) superior capacity to mineralize a wide 
range of persistent organo-pollutants such as azo 
dyes in both aqueous and non-aqueous medium 
(Okazaki et al., 2002; Selvam et al., 2003) and (c) 
capability to produce unspecific and non-
stereoselective oxidative enzymes (Giardina et al., 
2010; Wesenberg, 2003) that includes Laccase 
(Lac), lignin peroxidase (LiP), manganese 
peroxidase (MnP) (Giardina et al., 2010; Kuhad et 
al., 2004). Therefore, amongst the various types of 
microorganisms, fungi have been found to be 
competent in degrading and mineralizing the 
recalcitrant azo dyes (Rahimnejad et al., 2015). 

Many experiments have been carried out for 
the degradation of dyes using whole cultures or 
fungal extracellular enzymes (Ghosh et al., 2018; 
Leonowicz et al., 2001). The fungi that have been 
observed to decolorize the wastewater are P. 
chrysosporium, Trametes versicolor, Hirschioporus 
larincinus, Inonotus hispidus, Phlebia tremellosa, 
Aspergillus flavus, etc. (Ghosh et al., 2018; 
Robinson et al., 2001).  

A study says that Aspergillus flavus has been 
found to efficiently decolorize the wastewater 
comprising dye Acid brown 45  up to 75% within 
50h (Ghosh et al., 2018). A few fungal strains, viz., 
Candida and Magnusiomyces, were found to 
completely detoxify and mineralize azo dyes 
(Brüschweiler and Merlot, 2017). A special class of 
fungi called White rot fungi has proven to be 
metabolically versatile in bio-remedial treatment of 
recalcitrant organo-pollutants such as azo dyes in the 
textile effluent. So far, these are the only organisms 
known to completely mineralize lignin to CO2 and 
H2O, however, they cannot use it as a sole carbon 
and energy source (Rekik et al., 2019). This study 
critically focuses on the potential bioremediation of 
azo dyes in the textile effluents by ligninolytic 
enzymes of white rot fungi. 
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2. White-rot fungi (WRF) 
 

White rot fungi are very interesting fungal 
ecological group belonging to the class 
Basidiomycetes. Amongst the various class of fungi, 
they have the ability to digest the lignin component 
of lignocellulosic substrates (Dashtban et al., 2010). 
Ganoderma lucidum, Phanerochaete 
chryrosporium, Trametes versicolor, Pleurotus 
ostreatus and Irpex lacteus are few of the relevant 
species of WRF. Table 1 shows a report on the fungal 
cultures capable of dye degradation.  

White rot fungi are so called because their 
extracellular enzymes produce white-colored 
cellulosic and hemicellulosic residues after 
degrading lignin (Arora and Sharma, 2009). WRF 
like Phanerochaete chryrosporium, Trametes 
versicolor and P. avidoalba are well known for 
decolorizing lignin-rich textile mill effluents as well 
as helping to reduce absorbable organic halides 
(AOX) and chemical oxygen demand (COD) of the 
effluent (Livernoche et al., 1983; Modi et al., 1998). 
It is also evident that the use of WRF is a suitable 
alternative for the bioremediation of dye-containing 
wastewaters from textile industry. The potential of 
these fungi is attributable to their biodegrading 
capability utilizing their ligninolytic enzyme system 
(mainly Laccase, lignin peroxidase, manganese 
peroxidase) (Ali, 2010). Other mechanisms such as 
biosorption and bioaccumulation could also be 
associated in removing dye by the fungal mycelia 
(Kaushik and Malik, 2009; Senthilkumar et al., 
2014). White-rot fungus has the capability to 
breakdown azo dyes due to their structural similarity 
with lignin. The similar exceptional non-specific 
systems that enable these organisms to degrade 
lignin also facilitate degradation of the azo dyes. 
During the course of WRF metabolism, lignin 
oxidation by ligninolytic enzymes catalyzes the 
degradation/transformation of aromatic dyes in any 
of the two ways: (a) precipitation (b) opening the 
aromatic complex ring structure. Therefore, the 

fungus does not need any extra energy source 
(Husain, 2010). There are several variables that 
affect the decolorization using WRF. A recent study 
demonstrated that the most efficient nitrogen source 
for WRF is yeast extract, whereas the supplement of 
a carbon source was unnecessary to reach high levels 
of decolorization. They also showed that even 
though laccase production was favored by addition 
of copper, the decolorization rates were found to be 
unaffected (Merino et al., 2019). Another study 
worked on the parameters like carbon: nitrogen ratio, 
moisture content (%M), and copper sulphate 
concentration and found them to be inducers for 
ligninolytic enzymes (Jiménez et al., 2019). Further, 
Mejía and co-workers also demonstrated that a 
combined technology involving adsorption onto 
agro-industrial wastes and solid state fermentation 
using Pleurotus ostreatus can be a prospective 
option for best degradation (92.7%) of azo dyes like 
Allura Red, under the optimized media conditions 
such as carbon:nitrogen ratio of 2:1, moisture 
content of 80% and without CuSO4 as inducer (Mejía 
et al., 2017).  

The inadequate level of nutrients such as 
carbon, nitrogen sources frequently act as a stimulant 
for the synthesis and secretion of the ligninolytic 
enzymes (Ortiz-Monsalve et al., 2019). The laccase 
production can be enhanced by copper and numerous 
aromatic compounds in the medium. Previous study 
show that 5 mg l-1 of copper concentration seemed to 
be the optimal and coniferyl alcohol was found to be 
most effective inducing potential. New isoenzymes 
were formed after induction of each aromatic 
compound (Farnet et al., 1999). Another author 
demonstrate the enhancement in laccase activity in 
Pleurotus ostreatus by using wheat straw water 
extract as lignocellulytic enzymatic inducer (Parenti 
et al., 2013). While LiP activity in WRF can be 
significantly increased by using solid state 
fermentation (SSF) of lignocellulosic biomass such 
as jatropha, supplemented with the surfactant 
dodecyl sulfate (Ferreira da Silva et al., 2019). 

 
Table 1. Examples of fungal strains capable of dye degradation 

 

Fungi Dye 
Decolorization 

(%) 
Methodology 
implemented 

References 

White rot fungi Coriolopsis sp. (1c3), 
isolated from compost source 

Crystal Violet 
Methyl Violet 
Cotton Blue 

Malachite Green 

94 
97 
91 
52 

In vivo 
(biodegradation) 

Chen and Yien 
Ting. (2015a) 

Aspergillus terreus GS28 

Crystal Violet 
Methyl Violet 
Cotton Blue 

Malachite Green 

95 
98 
82 
54 

In vivo 
(biosorption) 

Chen and Yien 
Ting. (2015b) 

Thielavia sp. 
Remazol Brilliant 

Blue R 
90 

In vitro 
(enzymatic) 

(Mtibaà et al. 
(2018) 

Aspergillus terreus GS28 Direct Blue-1 98.4 
In vivo 

(biosorption) 
Singh and Dwivedi 

(2020) 
White rot fungi consortium (Daldinia 
concentric and Xylaria polymorpha) 

Cibacron brilliant 
red 3B-A 

98 
In vivo  

(enzymatic) 
Bankole et al. 

(2018) 
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While Mishra and co-workers illustrated that 

ligninolytic enzyme activities were enhanced by 
metallic salts and phenolic compound supplements 
in SSF. Syringic acid supplemented medium 
increased the activities of LiP and lac, whereas gallic 
acid increased MnP activity and CuSO4 increased 
Lac activity to improve the lignin degradation 
(Mishra et al., 2017). These attributes are supposed 
to play important role in design of process and 
optimization of fungal treatment of coloured 
effluents (Husain, 2010; Senthilkumar et al., 2014; 
Wesenberg, 2003). 
 
2.1. Bioremediation capabilities of WRF  
 

Different species of WRF have been shown 
to possess remarkable potential to bioremediate a 
wide range of dangerous organo-pollutants in 
industrial dye effluents, petroleum hydrocarbons, 
polychlorinated diphenyls, dioxins, pesticides, etc 
(Zhang et al., 2009). Their high tolerance to toxic 
environment, resistance to high temperature and a 
broad range of pH, makes them apt for bioremedial 
processes. The dye decolorization by ligninolytic 
enzymes of white rot fungi and estimation of 
ligninolytic activity of Phanerochaete 
chrysosporium was first reported by Glenn and co-
workers (Glenn et al., 1983). On encounter, they 
adsorb dyes onto their hyphae, where they initiate the 
breakdown of the dye chemical bonds. The 
production of ligninolytic enzymes is highly 
conditioned by the composition of growth medium 
and culture conditions (Nerud and Mišurcová, 1996). 
Along with the lignin modifying enzymes (LME), 
WRF also produce and release redox mediators, 
which process electron movement and promote 
expansion of the substrate range for the ligninolytic 
enzymes (Cañas and Camarero, 2010; Marco-Urrea 
et al., 2010; Morozova et al., 2007). White rot fungi 
Coriolopsis sp (Chen and Yien Ting, 2015a), 
Penicillium simplicissimum (Chen and Yien Ting, 
2015b) and Pleurotus eryngii (Hadibarata et al., 
2013) showed degradation along with the COD 
removal. 

Nevertheless, the cost of ligninolytic 
enzymes production has been a long-standing 
difficulty (Cardona et al., 2010). Biotechnological 
applications call for a huge amount of inexpensive 
enzymes. Therefore, the selection of appropriate 
lignocellulose biomass for fungal grow and 
production of enzyme is one of the crucial factors in 
development of competent biotechnology. Many 
studies have been carried out for efficient production 
of lignocellulolytic enzymes by WRF, which reveal 
that their production mostly depends on factors such 
as strain, substrate composition,  ion concentration, 
and cultivation conditions (Buswell et al., 1995; 
Elisashvili et al., 2008; Stajić et al., 2006). 

A more sophisticated solution to enhance 
ligninolytic activity is solid cultures or better known 
as Solid-State Fermentation (SSF). It is an optimal 

solution for  cultivating fungi (Agosin and Odier, 
1985; Tian et al., 2012; Wan and Li, 2010). Various 
studies have pointed that ligninolytic activity is more 
important with an SSF culture than with a liquid 
culture, perhaps because mechanisms are closer to 
those encountered in the natural environment. It is a 
fermentation process that involves a low water 
content of the substrate, with water/substrate ratios 
usually ranging between 1/1and1/10. By this 
process, oxygen diffusion and binding of enzymes to 
substrate is favored by the presence of mycelia, 
which is essential for fungal growth and leads to 
better lignin depolymerization. Lesser complex 
reactor designs than those of the liquid cultures, 
makes SSF a cheaper process (less aeration, mixing 
and heating). It also provides limited favorable 
environment for many microorganisms, and 
therefore lower sterilization energy costs. As a result, 
besides its ease of operation and cost-effectiveness, 
SSF with WRF would be advantageous compared to 
the enzymatic solutions. While modifying lignin, 
WRF increase its hydrophilicity (and thus its 
availability for hydrolysis).The mycelia penetration 
create spores, thus opening up a greater available 
surface area for enzymatic attacks.   

With the use of SSF process, the natural 
habitat for most of the filamentous fungi can be 
maintained utilizing solid waste materials or 
inexpensive raw materials (Webb, 2017). 
Additionally, an SSF setting doesn’t require the use 
of antifoam chemicals (Hölker and Lenz, 2005). 
Scale-up operations are hampered by the reduced 
control of online monitoring of process parameters, 
provision of heat and mass transfer as well as mixing 
(Singhania et al., 2009).  

Another recently developed efficient process 
is submerged fermentation (SmF). It is the key 
method for production of enzymes including 
ligninolytic enzymes, owing to the effortless 
parameter control and better technological basis for 
scale-up to industrial trials (Singhania et al., 2010). 
This technology results in homogenous supply of 
nutrients which leads to full contact and nutrient 
adsorption by cultured microbes. Majority of 
filamentous fungi, including white rot fungi have a 
tendency to generate spherical pellets in a SmF 
setting, and this difference in morphology compared 
to SSF points towards a possible justification for the 
observed ligninolytic enzyme production. The 
setback observed with production of ligninolytic 
enzymes employing SmF is the multicellularity of 
white rot fungi, which hampers the cultivation 
productivity. Additionally, the mass transfer of 
oxygen can greatly affect the reproducibility of 
submerged cultivations. 

A recent study reported the degradation of 
binary mixture of anionic dyes (brilliant blue FCF 
and allura red AC), using multiple WRF species 
under solid state fermentation (SSF) conditions. 
They found that Irpex lacteus, Bjerkandera adusta 
and Trametes versicolor achieved their maximum 



 
Ligninolytic enzyme system of white-rot fungi: a natural approach to bioremediation and detoxification of azo dyes  

 

 1987

decolorization of 80.11–86.04%, after 10-12 days. I. 
lacteus exhibited the highest decolorization 
percentage, even though only the enzyme 
manganese peroxidase was detected, with a 
maximum activity of 6.62 U gds-1 at day 14. Besides, 
T. versicolor was the only species with Lac activity, 
with a maximum of 15.94 U gds-1 at day 6 of 
fermentation (Merino et al., 2019). 

Another study showed that Trametes 
versicolor under solid state fermentation conditions 
could degrade Red 40 dye adsorbed onto a low-cost 
waste product. Under the optimized conditions of 
carbon:nitrogen ratio (30:1), moisture percentage 
(75%), and inductor concentration (0.5 mM), 
maximum dye degradation of 96.04% was achieved. 
Also, the highest enzymatic activity was 8.49 U/gdm 
after 14 days of culture at the flask scale (Jaramillo 
et al., 2017). 

However, free enzymes become unstable under 
certain harsh environmental conditions like 
temperature, pH, ionic strength of the solution, the 
type of solvent used, the amount and type of ions, 
inhibitors and cofactors present in the mixture, the 
concentration of substrates, the number of active 
enzyme molecules available during the catalytic 
conversion. Additionally, they are high-priced and 
non-reusable (Mohamad et al., 2015). Therefore, 
advanced strategies for stabilization of enzymes like 
immobilization procedures have been developed 
(Bilal et al., 2017).  

Immobilization is a technique where the 
catalyst couple with an insoluble support matrix, to 
hold a proper geometry (Asgher et al., 2014). On the 
account of easy recovery from reaction mixture and 
handling convenience, immobilization provides stable 
catalysts for real-time applications. Besides, 
immobilization increases thermal stability and the 
enzymes become more resilient to degradation, 
denaturation, and aggregation (Bilal and Asgher, 
2015). Many recent studies have reported the 
immobilization of ligninolytic enzymes using various 

strategies for their efficient industrial applications 
(Fernández-Fernández et al., 2013). Table 2 shows the 
immobilized ligninolytic enzymes from WRF and 
their effect on textile azo dye decolorization.   

The above mentioned data reveals the potential 
utility of immobilization processes for onsite 
application of ligninolytic enzymes for better 
bioremediation of azo dyes. 
 
3. Ligninolytic enzymes produced by WRF 
 

White rot fungi produce and release lignin 
modifying enzymes and other lignin degrading 
compounds. Lignin modifying enzymes include 
laccase (Lac) (EC1.10.3.2), lignin peroxidase (LiP) 
(EC.1.11.10.14) and manganese peroxidase (MnP) 
(EC.1.11.113). The Lac and peroxidases differ mainly 
on the basis of their electron acceptor, the former use 
molecular oxygen (O2) whilst the latter uses hydrogen 
peroxide (H2O2). In Table 3, the comparison between 
MnP, LiP and Lac from WRF is presented. 

Due to difference in the redox-potential and 
extent of glycosylation, the catalytic potential and 
stability of ligninolytic enzymes vary. For enzyme-
catalyzed reactions, the enzymes with high redox 
potential are favoured (Dashtban et al., 2010; Fabbrini 
et al., 2002; Riva, 2006). The redox-potential of 
ligninolytic enzymes is as follows: LiP>MnP> Lac. 
Glycosylation in extracellular enzymes can influence 
their shape, structure, composition, substrate binding 
sites formation and their properties such as enzymatic 
activity, redox-potential and catalytic potential (Sirim 
et al., 2011; Yang et al., 2015). 

With increase in glycosylation, the enzyme 
stability increases but it may not always enhance 
enzyme’s catalytic potential (Hamilton and 
Gerngross, 2007; Maestre-Reyna et al., 2015). It has 
been observed that deglycosylation of extracellular 
enzymes can have adverse effects on their stability, 
activity and catalytic potential (Nagai et al., 1997; 
Yang et al., 2015). 

 
Table 2. Decolorization studies of textile azo dyes by immobilized ligninolytic enzymes of WRF 

 

WRF Enzyme 
Immobilization 

matrices 
Immobilization 

technique 
Dyes 

Decolorization 
(%) 

Time 
duration 

References 

Aspergillus 
niger 

Lac 
Graphene oxide 

(GO) 
Covalent 

attachment 
DR 23 
AB92 

>75 
>75 

after 6 
cycles 

Kashefi et 
al. (2019) 

Funalia 
trogii 

Lac 
Fe3O4-TCS hybrid 

composite 
Cross-linking 

RB 171 
AB 74 

>80 
43 

after 6 
cycles 

4th cycle 

Ulu et al. 
(2020) 

Ganoderma 
lucidum 

MnP Chitosan beads Cross-linking 
RB 21 

RR 195A 
RY 145A 

92.1 
95.53 
94.4 

12h 
Asgher et 
al. (2016) 

Ganoderma 
lucidum 

MnP Agar-agar Entrapment 
RR 195A 

RB 21 
RY 145A 

78.6 
87.4 
81.2 

12 h 
Bilal et al. 

(2016) 

Pleurotus 
ostreatus 

Lac 
Fe3O4/SiO2 

nanoparticles 
Cross-linking 

PR MX-
5B 

100 20 min 
Dai  et al. 

(2016) 
Trametes 
versicolor 

Lac 
Copper alginate 

beads 
Encapsulation RBBR 75.8 4 h 

Le et al.  
(2016) 

Pleurotus 
ostreatus 

LiP Carbon nanotubes 
Covalent 

attachment 
RBBR ≥50 14 days 

Oliveira et 
al. (2018) 

Abbreviation: DR 23- Direct Red 23; AB 92- Acid Blue 92; RB 171- Reactive Blue 171; AB 74- Acid Blue 74; RBBR –Remazol Brilliant Blue R; 
RB 21- Reactive turquoise blue 21; RR 195A – Reactive red 195A; RY 145A- Reactive yellow 145 A; PR MX-5B- Procion Red MX-5B 
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Table 3. Comparison of the properties of MnP, LiP and Lac from WRF 
 

E.C. Lac (1.10.3.2) MnP (1.11.1.13) LiP (1.11.1.14) 
 p-benzendiol: O2-oxidoreductases Mn(II): H2O2  

oxidoreductases 
diarylpropan O2, H2O2 

oxidoreductases 

Prosthetic group 
1 type-1-Cu, 1 type-2-Cu, 2 coupled type-

3-Cu 
heme heme 

MW (kDa) 59-110(tetramers≤390˚) 32a– 62.5b(122a) 38-47 
Glycosylation N– N– N– 

Isoforms mono-, di-, tetramers; several monomers; up to 11d monomers; up to 15 
pI 2.6–4.5 2.8e –7.2f 3.2– 4.7 

pH range 2.0–8.5 2.6g– 4.5h 2.0– 5.0 
E0(mV) 500–800k 1510i 1450j 

C–C cleavage no   yes yes  
H2O2 –regulated no yes yes  

Stability + + +  + + +  +   
pIs of iso-enzymesd 2.6-4.5 2.9-7.0c 3.2-4.7 

Natural mediator 3-HAAn Mn2+; Mn3+ VA?1, 2Cl-14DMBm 

Specificity 
broad, phenolics, incl. 

 non-phenolics 
Mn2+ broad, aromatics  

Secondary  
and synthetic 

mediators 
ABTSo, HBTo, syringaldazine thiols, unsaturated fatty acids no   

Modified from (Fakoussa and Hofrichter, 1999): aBasidiomycete strain RBS k1 (Willmann and Fakoussa, 1997); bCeriporiopsissubvermispora in 
SSF (Lobos et al., 1994); c(Thurston, 1994); dCeriporiopsissubvermispora (Urzúa et al., 1995); eNematolomafrowardii (Schneega et al., 1997); 
fPanaeolus sphinctrinus (Heinzkill et al., 1998); gP. tigrinus (Maltseva et al.,1991); hPleurotusostreatus (Sarkar et al., 1997); iChelator H2O (Cui 
and Dolphin, 1990); j(Schoemaker and Leisola, 1990) VA: Veratryl alcohol; k(Messerschmidt, 1997); l(Farrell et al., 1989; Tien and Kirk, 1983); 
m2Cl-14DMB:2-chloro-1,4-dimethoxybenzene (Teunissen et al., 1998); n3-HAA:3-hydroxyanthranilic acid (Eggert et al., 1995); o2,2V-ABTS: 
azinobis(3-ethylbenzthiazoline-6-sulfonate); HBT: 1-hydroxybenzotriazole (Bourbonnais et al., 1996) 
 

LiP requires hydrogen peroxide (H2O2) to 
catalyze the oxidation of non-phenolic lignin units and 
mineralize the recalcitrant aromatic compounds. It has 
a high redox potential of 1.2V at pH 3.0 (Ertan et al., 
2012) as compared with other peroxidases and does 
not require a mediator to oxidize phenolic and non-
phenolic structures of lignin directly. Similar to LiPs, 
MnP also require H2O2 as an oxidant. MnP activity is 
mediated by manganese (Mn), where Mn2+ is oxidised 
to Mn3+; eventually Mn3+ freely diffuses and gets 
involved as a redox couple in the oxidation reaction 
(Wariishi et al., 1989). It plays an important role in the 
initial stages of lignin degradation. In comparison to 
Lac, MnP leads to better degradation of phenolic 
lignin due to its higher redox potential (ten Have and 
Teunissen, 2001) with subsequent release of carbon 
dioxide (Morgenstern et al., 2008). 

Initially, it was believed that Lac could only 
oxidize phenolic compound, because of its lower 
redox potential (450–800 mV) as compared to LiPs 
(>1 V). But in association with a mediator, a broad 
array of compounds can be oxidized by Lac. The 
mediators being low molecular weight compounds, 
transfer electrons from enzymes to substrate (Li et al., 
1999). 

Already, the enzyme characteristics, their 
mechanism of action as well as their biotechnological 
applications have been broadly depicted (Camarero et 
al., 1999; Hofrichter, 2002; Jones and Solomon, 2015; 
Ruiz-Duenas et al., 1999; Rodríguez Couto et al., 
2006; Van Driessel and Christov, 2001). The 
ligninolytic enzymes in particular Lac and LiP have 
been observed to be very unambiguous in nature and 
distinctly efficient catalysts. It has been reported that 
these enzymes can catalyze the degradation and 
detoxification of a wide range of organo-pollutants 
like azo dyes present in industrial effluents 

(Bharagava et al., 2009, 2018; Mugdha and Usha, 
2012; Pandey et al., 2007). 

The data from the previous studies confirm the 
necessity of nutrient supplementation for more 
efficient colour reduction, owing to the fact that 
bioremediation is coupled with the production of 
ligninolytic enzymes in secondary metabolism 
(Swamy and Ramsay, 1999). For instance, the best 
biodecolorization of 93.8± 1.5% and 90.6±0.5% for 
Acid Red 357 and Acid orange 142, respectively were 
obtained when they were treated with reduced nutrient 
supply conditions. Although the treatment with high 
nutrient supply also showed efficient removal of 
colour, the biodecolorization efficacy was 
unexpectedly lower (90.0±0.5% for Acid red 357 and 
84.5±1.0% for Acid orange 142). It was found that 
biodecolorization of real waste waters was highly 
influenced by composition of the nutrient sources (N1– 
high nutrient source - 2% (m/v) of malt extract and 1% 
(m/v) of glucose; N0.5 – reduced nutrient source-1% of 
malt extract and 0.5% of glucose; N0- no nutrient), as 
biodecolorization is associated with ligninolytic 
enzyme production in secondary metabolism (Swamy 
and Ramsay, 1999). N0 showed slight colour removal 
values, ranging between 50–70%. The coincidence of 
maximum peak of Lac activity and biodecolorization 
in case of N0.5 and the delay in achieving higher 
biodecolorization rate in case of N1 (compared to N0.5) 
confirmed that a higher supply of nutrients can delay 
the biodecolorization/biodegradation of dyes. 
Moreover, N1 permitted greater production of biomass, 
which seemed to negatively affect color removal.  

The fungal morphology seemed to be 
associated with the better performance of reduced 
nutrient supply treatment. The treatment N0.5 allowed 
to keep the uniform pellet form of the growing 
mycelia, homogeneously distributed in the 
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wastewater. In contrast, the high nutrient condition 
induced a heterogeneous growing of the inoculum, 
forming new pellets of different sizes that sometimes 
fragmented into small pieces or formed aggregates, 
resulting in a non-uniform mass of mycelium with 
small flakes peeling away. The pellet arrangement in 
the condition N0.5 improved the mass transfer (oxygen 
and nutrients) from the liquid phase (culture medium) 
to the solid phase (growing cells) as reported by 
Kaushik and Malik (2009). Therefore, the reduced 
nutrient supply treatment could help achieve better 
results because of better physiological conditions that 
led to high peaks of  Lac activity (1000–1300 U L-1 ) 
and mycelia pellet arrangements (Ortiz-Monsalve et 
al., 2019).  

Another study showed that lignocellulolytic 
enzyme production by the WRF, Pleurotus ostreatus 
could be improved by using different lignocellulosic 
biomasses as a substrate in sequential SSF and SmF 
processes. A higher yield of Lac (543 ± 21 U/L) was 
achieved. The results showed that the fermentation 
method and nature of the lignocellulosic biomass have 
important role in lignocellulolytic enzyme expression. 
This indication would be helpful in optimizing the 
production of integrated industrial lignocellulolytic 
enzymes (An et al., 2016). 

Fang et al. (2018) showed that the WRF strains 
Trametes Versicolor (strain MES 11914) and 
Pleurotus Sajor Caju (strain MES 03464) could be 
grown using solid-state fermentation of solid digestate 
and enhance the secretion of ligninolytic enzymes 
such as Lac and MnP to degrade lignin in different 
extents (Fang et al., 2018). 

 
3.1. Laccase 
 

Laccases (oxygen oxidoreductase) are N-
glycosylated multi-copper proteins with molecular 
masses of 60-390 kDa and are efficiently produced 
by a wide spectrum of Basidiomycota (Matera et al., 
2008; Nguyen et al., 2016; Songulashvili et al., 2016; 

Surwase et al., 2016). Lac was first discovered in the 
sap of the Japanese lacquer tree Rhus vernicifera, 
and its characteristic as a metal containing oxidase 
was discovered by Bertrand in 1985 (Giardina et al., 
2010) and the active site is occupied by four copper 
atoms (as Cu2+ in the resting enzyme) distributed 
among different binding sites (McGuirl and Dooley, 
1999; Messerschmidt, 1997; Wesenberg, 2003). 
Their low substrate specificity has helped them draw 
tremendous attention in environmental, industrial 
and biotechnological sectors (Agrawal et al., 
2018).These are oxidative extracellular enzymes 
synthesized by white rot fungi and are proficient in 
degrading different types of lignin-based compounds 
in vitro. Because of their capacity for bioremediation 
and distinctive features such as non-specific 
oxidation capacity, no requirement for co-factors 
and no dependence on readily available oxygen as an 
electron acceptor, Lacs have great importance in 
different biotechnological processes (Kalyani et al., 
2012; Telke et al., 2011). They can oxidize phenols 
and phenolic lignin compounds by one electron 
abstraction resulting in the formation of radicals that 
can either repolymerize or lead to depolymerization 
(Demarche et al., 2012; Surwase et al., 2016). A 
number of studies have published on Lac mediated 
degradation of azo dyes (Balan et al., 2012; 
Palvannan and Sathishkumar, 2010; Sathishkumar et 
al., 2013). Table 4 shows various Lac producing 
fungal cultures and their ability to degrade numerous 
azo dyes. Lac acts by formation of free radicals 
which bypass the steps involved in the formation of 
carcinogenic amines (Chivukula and Renganathan, 
1995). White rot fungi can easily enhance Lac 
production by addition of inducers (Palvannan and 
Sathishkumar, 2010). The mediators being low 
molecular weight compounds which carry electrons 
from enzymes to substrate. The mediator can easily 
access the active site of the enzyme, where it gets 
oxidized into more stable intermediate (high redox 
potential).  

 
Table 4. Decolorization of various azo dyes by Lac producing fungal culture 

 
S. no. 

Fungal culture Dye Time 
Decolorization 

(%)
References 

1 
Cerrena unicolor Acid Red 27 24 h 100 

Michniewicz et al. 
(2008) 

2 Geobacillus catenulatus 
MS5 

Congo Red 32 h 99 
Verma and Shirkot 

(2014) 
3 

Pleurotus ostreatus Synazol Red HF6BN 
24 

days 
96 Ilyas et al. (2012) 

4 Immobilized Trametes 
pubescens, 

Pleurotus ostreatus 

Remazol Brilliant Blue R,  
Reactive Blue 49 

10 
days 

>95 Casieri et al. (2008) 

5 Ganoderma sp. Methyl Orange 72 h >90 Zhao et al. (2011) 
6 

Armillaria sp. F022 Reactive Black 5 96 h 80 
Hadibarata et al. 

(2012) 
7 Pleurotus ostreatus Remazol Brilliant Blue R 72 h 80 Palmieri et al. (2000) 
8 

Lentinus Polychrous Congo Red 3 h 75 
Suwannawong et al. 

(2010) 
9 Pycnoporus sanguineus Trypan Blue 24 h 70 Annuar et al. (2009) 

10 Coprinopsis cineria Methyl Orange 4 h 47.60 Tian et al. (2014) 
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After diffusing away from the enzyme, the 

oxidized mediator oxidizes more complex substrates 
before returning to its original state (Barreca et al., 
2003; Bourbonnais et al., 1995; Eggert et al., 1996; 
Fabbrini et al., 2002; Fernández-Sánchez et al., 
2002; Johannes and Majcherczyk, 2000; Shleev et 
al., 2005; Solomon et al., 1996; Xu, 1997; Xu et al., 
1999). The electrons taken by Lacs are finally 
transferred back to oxygen to form hydrogen 
peroxide. Enzymes are mostly substrate specific, but 
Lac can oxidize a wide range of substrates like 
aromatic amines, diphenols, polyphenols, 
benzenethiol. The ideal redox mediator would be a 
small-size compound, able to generate stable 
radicals (in its oxidized form) that do not inactivate 
the enzyme, and whose reactivity would allow its 
recycling without degeneration. In addition, from the 
point of view of their industrial and environmental 
application, Lac mediators should be environmental-
friendly and available at low cost. The most 
competent Lac mediators for oxidation of 
recalcitrant aromatic compounds are 2, 2-azino-bis-
3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 
the NN–OH mediators, such as hydroxyphthalimide 
(HPI), 1-hydroxybenzotriazole (HBT), N-
hydroxyacetanilide (NHA) or N-violuric acid (VLA) 
(Call, 1994; Paice et al., 1995; Srebotnik and 
Hammel, 2000; Xu et al., 2000). When Lac oxidixes 
these mediators, a highly reactive nitroxyl radical 
(NN–Oꞏ) is generated due to the release of a proton 
after enzymatic removal of an electron. The target 
substrate is then oxidized by the nitroxyl radicals by 
the mechanism of hydrogen atom transfer (HAT) 
(Fabbrini et al., 2002; Xu et al., 2000). 

Lacs have been extensively studied in huge 
scale for their capability to degrade azo dyes (Casieri 
et al., 2008)(Blánquez et al., 2004; Chivukula and 
Renganathan, 1995; Kirby et al., 2000; Novotný et 
al., 2011; Peralta-Zamora et al., 2003). On 
supplementation of Cu2+ (Palmieri et al., 2000) or 
aromatic compounds such as veratryl alcohol 
(Rodriguez-Couto et al., 2006) and 2,5-xylidine 
(Eggert et al., 1997; Leonowicz et al., 2001), Lac 

production is enhanced. Lac alter the structure of azo 
dye by destroying their chromophoric assemblies, 
with the generation of phenoxyl radicals in the 
course of reaction (Chivukula and Renganathan, 
1995). During the first step, a phenoxy radical is 
generated after an electron is abstracted from the 
phenolic/naptholic ring. The abstraction of a second 
electron yields an aromatic cation which can be 
stabilized by the electron-donating groups present in 
the ring (Fig. 1).  

Previously, the best biochemical 
decolorizations were achieved with those azo dyes 
that carried hydroxyl (–OH) functional groups (that 
are strong electron donating moieties) in ortho and 
para positions to the azo bond (Kandelbauer et al., 
2004a). The Lac alone cannot attack the meta-
substituted analogue because of less activation 
energy at this position. The electron withdrawing 
substituent like halogen or nitro groups on the 
aromatic rings, make it difficult for the oxidases to 
yield cation radicals, which inhibits the dye 
degradation. Alternatively, the azo dyes 
characterized by weakly electron-donating methyl 
groups have been observed to decolorize efficiently 
(Pasti-Grigsby et al., 1992). And the heterocyclic azo 
dyes containing pyrazole or triazole rings were not 
significantly decolorized unless there are hydroxyl 
and other electron donating groups present on the 
heterocyclic and vicinal aromatic rings in the ortho 
position to azo bond. Other effects may contribute as 
well such as those caused by reaction intermediates 
(Kandelbauer et al., 2004b). 

The production of Lac is dependent on the 
nature of carbon source, which might come from 
various agro-industrial lignocellulosic residues. But 
there are limitations to Lac production due to lack of 
kinetic and design data related to several 
fermentation processes (Lonsane et al., 1985). SmF 
can enhance Lac production in a comparatively short 
period than SSF (Songulashvili et al., 2007). The 
physiological modulation of Lac production is 
relatively simpler in SmF than in SSF (Elisashviliet 
al., 2008). 

 

 
 

Fig. 1. Proposed mechanism for the degradation of phenolic azo dyes by P. oryzae Lac (Chivukula et al., 1995) 
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Lac production by WRF can be successfully 

carried out in SmF, by substituting the carbon source 
with various agro-industrial lignocellulosic residues 
(Songulashvili et al., 2011). This approach would 
trim down the production cost of ligninolytic 
enzymes and hence allow large-scale industrial 
applications. A previous study demonstrated that 
Lac production by the WRF Cerrena unicolor C- 
139 can be enhanced by SmF in the presence of a 
cheap lignocellulosic substrate, wheat bran. A 
maximum Lac activity of 416.4 U mL-1 at day 12 of 
fermentation was observed (Songulashvili et al., 
2016).  

The degradation mechanism of crystal violet 
dye by Lac with a a low molecular mass fraction 
(LMMF) extracted from WRF Pleurotus ostreatus has 
been reported by Yen and co-workers (Yan et al., 
2009). Other author showed that on Lac assisted 
degradation, the dye azonaphthol Orange 2 was found 
to have 72.8% decolorization, whereas the dye 
azobenzene Acid Orange 6 had 45.3% decolorization 
(Legerská et al., 2018). The presence of hydroxyl 
group at o-position to azo bond in the structure of 
Orange 2 was more favoured than the presence of two 
hydroxyl groups at o- and p-positions to azo bond in 
Acid Orange 6. Even though the Lac treatment was 
more efficient in case of Orange 2 decolorization, the 
toxicity of both the monoazo dye solutions was 
lessened for the prokaryotic growth. Their result 
suggested that T. versicolor derived Lac has the 
capability to degrade selected synthetic dyes by 
decreasing the toxic effect of synthetic dyes after Lac-
catalysed reaction. 

However, it is also crucial to research 
engineering aspects for industrial applications of Lacs. 
Certain pilot scale bioprocesses have also been put to 
action for Lac production. Some authors demonstrated 
a cost-effective process for higher production of 
extracellular, thermo-alkali stable Lac from 
Staphylococcus arlettae S1-20 using tea waste. And a 
pilot-scale bioprocess with optimal conditions 
increased Lac yield.  

The optimum temperature (85ºC) and pH (9.0) 
retained significant amount of activity even in the 
presence of 20% (v/v) ionic liquids (Chauhan et al., 
2018). Studies on bioreactor scale-Lac production 
reported that the Lac production (3.80 U mL-1 ) by the 
fungus Pleurotus ostreatus CP-50 in a 10 L stirred 
tank bioreactor was enhanced in low oxygen transfer 
rates (Tinoco-Valencia et al., 2014). Another report 
shows that a marine-derived basidiomycete 
Peniophora sp. CBMAI 1063 could produce 
considerable amount of enzyme in both stirred tank 
(ST) and air-lift (AL) bioreactors. ST bioreactor led to 
higher Lac production, while the AL bioreactor 
supported higher formation of biomass. They revealed 
that initial pH of the medium, agitation and aeration  

 
 
 

rates, directly influences Lac production and fungal 
biomass formation (Mainardi et al., 2018). 
 

3.2. Lignin peroxidase 
 

Lignin peroxidase (LiP) (1,2-bis(3,4-
dimethoxyphenyl)propane-1,3-diol) also known as 
ligninase is a key-lignin degrading enzyme produced 
by white rot fungi. They have molecular weight 
ranging from 41-43 kDa. In presence of hydrogen 
peroxide, LiP carry out the oxidative 
cleavage/depolymerization of lignin. LiP was 
primarily isolated from the culture broth of a 
ligninolytic fungus, Phanerochaete chrysosporium. 
LiPs are oxidized by H2O2 to give a two-electron-
oxidized intermediate (LiP-I), where iron is present in 
Fe4+ state and a free radical is found on the tetrapyrrole 
ring or on a nearby amino acid. Subsequently, LiP-I 
oxidizes a donor substrate by one electron which 
produces a radical cation and LiP-II, where iron is 
present in Fe4+ state, but no radical is found on the 
tetrapyrrole. Then a second molecule of donor 
substrate is oxidized by LiP-II, yielding another 
radical ion and the resting state of peroxidase. Non-
phenolic units of lignin are oxidized by LiP via 
removal of an electron and creating cation radicals, 
which then decomposes chemically. The Cα-Cβ bond 
in the lignin molecule is cleaved by LiP (Hatakka, 
2005; Wong, 2009). The general catalytic mechanism 
followed by LiP (Wong, 2009) (Eqs. 2-4):  
 

𝐿𝑖𝑃 𝐹𝑒 𝐻 𝑂 → 𝐿𝑖𝑃 𝐼 𝐹𝑒 𝐻 𝑂   (2) 
 

𝐿𝑖𝑃 𝐼 𝐴𝐻 → 𝐿𝑖𝑃 𝐼𝐼 𝐹𝑒 𝐴   (3) 
 

𝐿𝑖𝑃 𝐼𝐼 𝐴𝐻 → 𝐿𝑖𝑃 𝐴   (4) 
 

LiP breaks down lignin in an approach similar 
to that of Lac, MnP and several other peroxidases such 
as versatile peroxidase (Zeng et al., 2013). 

Accounting to its low specificity and high 
redox potential, LiPs have been characterized by a 
distinct ability to oxidize a vast range of aromatic 
phenolic and non-phenolic compounds as well as 
organo-pollutants like azo dyes (Valli et al., 1990). 
Recently LiP obtained from Ganodermalucidum IBL-
05 showed decolorization efficiency for Sandal-fix 
Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix 
Foron Blue E2BLN, Sandal-fix Black CKF and 
Sandal-fix Golden yellow CRL dyes of 66%, 59%, 
52%, 40% and 48% respectively, which then 
significantly increased to 93%, 83%, 89%, 70% and 
80% in case of Ca-alginate immobilization of LiP 
(Bilal et al., 2019). It can be concluded that 
immobilized LiP might be a potential biocatalyst for 
the bioremediation of dye-based textile effluents. Fig. 
2 shows a schematic degradation pathway of methyl 
orange, as a model dye, in the presence of LiP (Bilal 
et al., 2018). 
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3.3. Manganese peroxidase 
 

Amongst the various ligninolytic enzymes, 
manganese peroxidase (MnP), a heme protein with 
molecular weight normally varying from 40 to 50 kDa 
(Hofrichter, 2002), are thought to play a crucial role in 
lignin breakdown because it is found in all lignin 
degrading WRF. They belong to the class II 
peroxidase group in Basidiomycetes fungi and possess 
a highly specific Mn2+ binding site. MnP was first 
extracted in the culture extract of P. chrysosporium 
(Bonnarme and Jeffries, 1990).  

The classical long MnPs have three amino acid 
residues (one Asp and two Glu) in their binding site 
while several fungal Mn2+ oxidizing enzymes have 
been found with an additional tryptophan residue on 
the enzyme surface, which are called hybrid MnPs. 
These hybrid MnPs resemble with LiPs and can 
perform oxidation through a long range electron 
transfers. MnP has been found to decolorize majority 
of sulfophthale in dyes at pH 4.0.  

Previous research have deduced that MnP 
activity has strong preference for methyl group at 
ortho than at the meta position on chromophore, as 
MnP has higher Km value for meta-cresol purple and 
lower Km value for ortho-cresol red (Shrivastava et 
al., 2005). The mechanism of the catalytic activity of 
MnP is as follows (Isroi et al., 2011; Wong, 2009) 
(Eqs. 5-8): 
 
𝑀𝑛𝑃 𝐻 𝑂 → 𝑀𝑛𝑃 𝐼 𝐻 𝑂      (5) 
 
𝑀𝑛𝑃 𝐼 𝑀𝑛 → 𝑀𝑛𝑃 𝐼𝐼 𝑀𝑛      (6) 
 
𝑀𝑛𝑃 𝐼𝐼 𝑀𝑛 → 𝑀𝑛𝑃 𝑀𝑛  𝐻 𝑂     (7) 
 
𝑀𝑛 𝑅𝐻 → 𝑀𝑛 𝑅𝐻     (8) 
 
where: RH = organic substrate. 

MnP in crude form has the capability to 
decolorize dyes like indigo carmine (Li et al., 2015).  
 

Studies have shown successful decolorization and 
removal of organic matter of Acid Red 88 (dye 
removal efficacy of 96%) and Reactive Red 180 (dye 
removal efficacy of 98%) with the help of 
enzymesfrom WRF Phanerochaete chrysosporium in 
a bioreactor system (Deveci et al., 2016).  

Fig. 3 shows a peroxidase-assisted degradative 
pathway of Reactive black 5 and Reactive Black 19. 
Another research demonstrated the decolorization of 
azo dyes like amaranth, reactive black 5 and cibacron 
brilliant yellow to up to 95, 76 and 46% respectively, 
up to 24 hours by the action of a purified MnP (MnP 
TP55) whereas the decolorization efficacy was found 
to be 90.55 and 88% respectively on the action of 
another purified MnP (MnPBA30) (Rekik et al., 
2019). Both the MnPs were isolated from a WRF 
Trametes pubescens strain i8. Certain studies on 
decolorization by purified MnPs show that MnP have 
requirement of H2O2 and MnSO4 to attain maximal 
rates of decolorization (Champagne and Ramsay, 
2005). 

 
4. Elucidation of degradative pathways employed 
by WRF in decolorization of azo dyes 
 

Dye removal mechanism by WRF follow three 
major steps i.e., bioaccumulation, bio-absorption and 
biodegradation. Usually the actively growing 
microbes carryout the bioaccumulation process as a 
result of their metabolism, while biosorption is found 
to occur in both living and dead biomass. 
Biodegradation takes place as a result of breakdown of 
dye molecules by the naturally produced versatile 
extracellular and intracellular enzyme activities of the 
fungi such as Lac, MnP and LiP (Tan et al., 2016). 
Fungi carry a superfamily of intracellular heme-
containing monooxygenase called cytochrome P450s 
(CYP), which have crucial role in housekeeping 
biochemical reactions, detoxification of xenobiotics 
and sustainability in adverse ecological niche 
(Durairaj et al., 2016) (Fig. 4). 
 

 
 

Fig. 2. A schematic degradation pathway of Methyl Orange, as a model dye, in the presence of LiP  
as a novel catalyzing agent (adapted from Bilal et al., 2018) 
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(a) 
 

(b) 
 

Fig. 3. Peroxidase-assisted catalytic pathways; (a) RB-5, and (b) RB-19 (adapted from Bilal et al., 2018) 
 

Over 6000 CYP genes are found in fungal 
genomes (Manavalan et al., 2015). The presence of 
lignin-based substrates provided by Malt Extract Agar 
(MEA) media, leads to activation of these fungal 
enzymes (Ghorbani et al., 2015; van Kuijk et al., 
2015). The cytochemicals mediated by the CYP 
enzyme system can transform the dye molecules into 
chemical derivatives such as hydroxyl, dihydrodiol  

 

and quinone.  
The subsequent step is thought to be reductive 

breakdown of azo groups in the dye molecules by 
oxidoreductases. Thereafter, these metabolites get 
coupled with other functional groups such as methyl 
and glucose groups mediated by transferases, leading 
to de-aminated dye molecules (partly degraded) and 
formation of simplest end products (Manavalan T. et 
al., 2015).  
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Fig. 4. Proposed WRF mechanism for dye degradation (adapted from Kumar et al., 2018) 
 

Then the degraded products can either get 
stored in the cell organelles or get released into the 
environment, where they may be further broken 
down by surrounding media and /or organisms. 
Previous studies depict this mechanism and thus, it 
is essential to thoroughly investigate on the same. 
 
5. Challenges and future scope of WRF for dye 
remediation 
 

Extensive studies to biodegrade and detoxify 
azo dyes in textile effluents using various WRF strains 
have been followed through. These treatments have 
been found to be a propitious option. The analysis of 
operational performance reveals that for proper 
maintenance of the system, the microbe-based dye 
degradation is still unfortunately reliant upon the 
alteration in the environment of the microbial 
population. Additionally, the trouble-free access to 
dye molecules by microbes is another important factor 
that would regulate the operational success. To 
overcome this issue by ligninolytic enzymes in the 
bioremediation of contaminants in situ, 
immobilization should be extensively implemented in 
order to improve stability, adaptability and 
commercial feasibility of enzymes. The best method 
will also be scrutinized by the principal parameters 
like appropriate transfer of oxygen, less operation 
time, homogenization, operational stability and the 
suitability in scale up. In the advancement of this 
microtechnology towards industrial scale, sterility 
must be avoided. Since the wastewater sterilization is 
not feasible from an economic and environmental 
point of view, microtechnology should emphasize on 
non-sterile conditions. This approach would assure 
endurance and activity of the microbes during 
biodegradation operations. Besides, the vital issues 
thwarting the huge-scale biodegrading approach of 
WRF is the requirement of immense amount of 
ligninolytic enzymes and the accompanying excessive 
production cost. The use of SmF or SSF technologies 
can be implemented to improve the low cost 

production of ligninolytic enzymes by utilizing 
cheaper lignocellulosic biomasses as the inducer 
substrate. Also, new strategies need to be developed to 
curb the costs that mainly account to the growth media 
for the fungi during the production of ligninolytic 
enzymes. Moreover, the reported experiences in pilot 
plant are still too inadequate. Therefore, before a full-
scale application, it should be essential to execute the 
outcomes inferred from bench-scale reactors to the 
pilot plants. Future research should be based on:  

a.  Application of a standardized setup of 
parameters for determining whether SmF or SSF is 
the optimal cultivation process for specific strains of 
WRF and selection of appropriate substrates like 
agro-industrial residues, through inter- and intra- 
laboratory trials. The selection of the appropriate 
processes is of great importance with respect to 
optimized enzyme-product yield and shaping future 
researches on solid state or submerged fermentation 
technologies. 

b.  The nature of the lignocellulosic biomass 
and the fermentation method play an important role 
in lignocellulolytic enzyme expression. This hint 
would be supportive in optimizing the production of 
integrated industrial lignocellulolytic enzymes. 

c.  Immobilization of ligninolytic enzymes 
should address an existing issue such as suitability of 
unique physiochemical and structural features of an 
enzyme for bioremediation of azo dyes at a larger 
scale. Furthermore, the bioremediation carried out 
using immobilized ligninolytic enzymes should be 
eco-friendly and cost effective. On the account of 
being environmentally friendly, non-toxicity and 
ease of use, the development and implementation of 
immobilized enzymes are supposed to be an area of 
intense future investigations. 

d.  Intensive studies on the operational 
parameters for the dye biodegradation, so as to 
enhance the efficacy of microbial system towards the 
breakdown of the dyes. 

e.  In order to surmount technical challenges 
and escalate the feasibility of biodegradation 
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activities on the basis of kinetics, stability and 
operational capabilities. 

f.  Results derived in bench-scale reactors 
need to be substantiated at pilot plants in real time 
under real reaction conditions (pH, temperature, etc) 
before any full-scale application. 
 

6. Conclusions 
 

The progress and execution of 
microtechnology’s for environmental management 
is a need for sustainability. So far, assorted 
physicochemical treatment strategies have been 
brought to action to curtail the overall degree of dye 
pollution in the aqueous ecosystem.  

Nonetheless, the effectuality of these 
conventional methods is limited on account of high 
operating/ energy costs, enormous sludge 
production, release of environmentally unfriendly 
byproducts and need for huge amount of chemicals 
and attracting energy penalties.  

This review unfolds that the white rot fungi 
are the most promising organisms with potential uses 
in biodegradation and management of recalcitrant 
environmental contaminants and xenobiotics like 
azo dyes. With the combined use of prospective 
technologies like SSF and SmF, the productivity and 
activity of ligninolytic enzymes can be enhanced by 
many folds.  

The commercial and onsite application 
efficiency of WRF and its ligninolytic enzymes can 
be enhanced by immobilization techniques. In 
conclusion, the WRF could be envisioned as an 
outstanding alternative for bioremediation and 
detoxification of textile wastewater, as they have 
been recognized as advantageous for dye removal on 
the grounds of lucrative operations, eco-friendly 
approach, effortless, safe operations and zero sludge 
production.  
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