Environmental Engineering and Management Journal

May 2020, Vol.19, No. 5, 721-731 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

DECONTAMINATION OF PESTICIDE RESIDUES IN WATER SAMPLES USING COPPER AND ZINC CO-DOPED TITANIA NANOCATALYST

Tentu Nageswara Rao^{1*}, Pulapalli Babji², Botsa Parvatamma³, Tentu Manohra Naidu⁴

¹School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam, 641-773, Republic of Korea
²Department of Physical, Nuclear Chemistry & Chemical Oceanography, School of Chemistry, Andhra University, Visakhapatnam Andhra Pradesh, India
³Department of organic Chemistry, Gayathri P.G Courses, Gotlam, Vizianagaram, AP, India
⁴Department of nuclear physics, Andhra University, Visakhapatnam, Andhra Pradesh, India

Abstract

Copper and Zinc co-doped titania nano photocatalyst (Cu-Zn-TiO₂ NPC) was fabricated and characterized using room temperature X-ray diffraction (XRD), field emission electron microscopy (FESEM) with high-resolution transmission electron microscopy (HRTEM) and energy dispersion X-ray (EDX). X-ray diffraction studies of the $Cu^{2+}-Zn^{2+}/TiO_2$ show the presence of anatase phase TiO₂ and in the sample prepared from 0.05, 0.10, 0.15 and 0.20 mmol have also shown the presence of anatase phase only. The photocatalytic efficiency of the synthesized catalysts was investigated by the photocatalytic degradation of aqueous bispyribac sodium under sun light irradiation, and it was found that the Cu and Zn co-doped TiO₂ catalysts has better photocatalytic activity. It can be also showed that with the addition of dopants to titania hinders the growth of nanoparticles. This can be attributed of the fact that there is a more efficient electron-hole creation in Cu and Zn co-doped TiO₂ in sunlight, contrary to un-doped TiO₂ which can be excited only in UV irradiation. Photocatalytic studies of bispyribac sodium at various conditions such as acidic, basic and neutral reveals that the activity is enormously increased with co-doped TiO₂ is proved to be effective for photocatalysis of bispyribac sodium and is more effective in basic medium.

Keywords: bispyribac sodium, Cu-Zn-TiO2 NPC, DT 50, FTIR, photocatalytic activity, XRD

Received: June, 2019; Revised final: October, 2019; Accepted: November, 2019; Published in final edited form: May, 2020

^{*} Author to whom all correspondence should be addressed: e-mail: tnraochemistry@gmail.com