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Abstract 
 
Energy production from renewable and waste materials is an attractive alternative to conventional production chains that involve 
agricultural products. Residual biomass from cultivars and coffee production chain, despite their widespread availability, aren’t 
enough considered in energy models and economic development. In addition to lignocellulosic biomass, coffee can be considered 
as a new material usable in such processes. ICO (International Coffee Organization) data showed that the Spent Coffee Grounds 
(SCG) production worldwide is about 6 million of tons per year. In the work presented, calorific value, ash content, and elemental 
analysis of lignocellulosic biomass and SCG pellets, were firstly examined. The aim was to compare SCG with conventional 
lignocellulosic biomass already used in thermal production. Compositional and energetic analysis permit to fix linear models for 
biomass energetic yield prediction. Models that relate the higher heating value (HHV) to the compositional analysis mostly date to 
the late 19th century. Estimation of HHV from the elemental composition of fuel is one of the basic steps in performance modelling 
and calculation for thermal systems. The possibility to perform statistical analysis on data collected in the same laboratory gave the 
opportunity to reliably compare conventional and unconventional biomass. The linear regression model fitted on the whole dataset 
had an R Squared of 0.85 showing a good HHV prediction from elemental analysis. Coffee appeared as a feedstock with peculiar 
characteristics that differentiate it from the others, while herbaceous and arboreal biomass mostly differentiated for ash and moisture 
content. 
SCG showed an HHV higher than any other woody and herbaceous plant, manifesting a great potential from an energetic point of 
view. According to the concept of circular economy, coffee companies, in their waste, have already a valid resource usable in a heat 
generator for the roasting process. 
 
Key words: biomass, modelling, spent coffee grounds (SCG), ultimate analysis 
 
Received: April, 2021; Revised final: July, 2021; Accepted: September, 2021; Published in final edited form: October, 2021 
 
 
1. Introduction 

 
Large amounts of agricultural and forestry 

residues, usually treated as waste, can be considered 
as a significant resource for energy production through 
biological or thermo-chemical processes (Bianchini et 
al., 2021; Carnevale et al., 2020; Paris et al., 2019a; 
Schmitt et al., 2019; Sun et al., 2018). To date, 

∗ Author to whom all correspondence should be addressed: e-mail: francesco.gallucci@crea.gov.it; Phone: +39-06/90675238 

processes and models for the exploitation of ligno-
cellosic biomass are mainly based on forest resources 
(Tomassetti et al., 2019; Torre et al., 2019). Despite 
the considerable volumes produced, residual 
biomasses from agricultural crops are rarely 
considered in energy models and economic 
development. Alternative energy sources are 
increasing their importance both to meet the energy 
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growing demand and to reduce the environmental 
impact. Given the high volumes produced every year, 
soluble coffee residues represent an important 
unexplored resource in the agro-industrial sector. 
Coffee has one of the most developed markets in the 
world and together with tea, it is among the most 
consumed beverages (Park et al., 2019). Its annual 
worldwide generation reach the 6 million tons 
(Mussatto et al., 2011). The organic molecules present 
in coffee suggest that the recovery of such resource 
can be economically advantageous, leading to the 
synthesis of valuable compounds. (Kibret et al., 2021; 
Kondamudi et al., 2008; Kua et al., 2016; Liu et al., 
2017; Murthy and Madhava Naidu, 2012; Mussatto et 
al., 2018). Studies regarding the potential thermal 
exploitation of spent coffee grounds (SCG) are 
increasing and the reason of such interest in coffee 
waste is explained by its big market volume. ICO 
(international Coffee Organization) data showed that 
the apparent consumption of coffee in Italy between 
2004 and 2016 oscillates from 5.46 to 6 million of 60 
kg green bean bags (Sette, 2017).  

The large amount of waste production in the 
coffee market unavoidably leads to questioning on the 
possible utilization of such waste inside a circular 
economy model. Combustion is one of the thermal 
production processes more rooted and used in 
common living, especially through the domestic 
fireplace and stoves. The feasibility of SCG thermal 
valorization has to be discussed both from the logistic 
and energetic point of view (Volpi et al., 2019). The 
possibility to use a new material like coffee in 
established thermal conversion methods was already 
investigated in previous works (Colantoni et al., 2021; 
2020). Biomass fuels are considered a renewable 
resource both for their continuous production and 
because they do not affect the overall balance of CO2 
in the atmosphere.  

Knowing the physicochemical properties of 
biomass is essential for its use in power plants. These 
raw materials are experimentally characterized by 
analyzing the elemental composition, energy 
efficiency, and fusibility of the ashes (Pari et al., 
2018). Such analyzes are regulated by standards to 
ensure the quality and comparability of the 
measurement results. The calorific value of biomass is 
a fundamental parameter for the exploitation of this 
type of fuel in power plants. The higher calorific value 
(HHV) consists of the amount of heat produced by the 
complete combustion of a unit quantity (by mass or 
volume) of fuel under certain conditions, when the 
reaction pressure is kept constant. The lower calorific 
value (LHV) is obtained when the energy used for the 
evaporation of the water formed during combustion is 
subtracted from the total energy produced. Numerous 
models have been published to relate the energy 
produced by the fuel to the elemental composition of 
the fuel itself. (Friedl et al., 2005). For these reasons, 
the calorific value of such wastes is regarded as the 
most significant parameter that defines the fuel 
quality.  The estimation of the calorific value based on  

 

the chemical composition of biomass has also been in 
great demand when reliable analysis results are 
present.  

Macromolecular ingredients such as 
hemicellulose, cellulose, and lignin account for most 
of the organic part of the biomass while some others 
include starch, proteins, triglycerides, lipids, etc. 
Accordingly, some kinds of biomass, particularly 
woody ones, are generally defined as lignocellulosic. 
On the other hand, although these macromolecular 
components are consisted mostly of carbon, hydrogen, 
and oxygen, their molecular configurations  and 
structures are highly different (Ozyuguran et al., 
2018). 

Many correlations for the estimation of HHV 
from elemental composition are available in literature, 
the most important have been presented in Channiwala 
and Parikh (2002), and most of these relations have 
been derived for coals. Furthermore, the majority of 
these correlations, when referred to lignocellulosic 
biomass, use mixed datasets with data provided from 
different studies, obtained with different instruments 
and sometimes with different methods. To carry out 
the analyzes in the same laboratory permits to 
minimize the data variability coming methods, 
instruments and operators. For these reasons, the 
present work is marked with the intention to create a 
homogeneous dataset to set up the HHV modeling 
from compositional analysis of different kinds of 
biomass. 

 
2. Materials and methods 

 
2.1. Biomass description 

 
The biomass coming from different projects 

and relative works, were collected for more than a 
year, starting from October 2019. The modeling 
analysis has been carried out on 41 samples composed 
of different mixtures of lignocellulosic biomass. The 
complete biomass description is provided in Table 1. 

 
2.2. Ultimate and proximate analysis 

 
Ultimate and proximate analysis was carried 

out adopting always the same procedure following 
European standards for biomass characterization. The 
biomass humidity was measured through the 
Memmert UFP800 drying oven at a temperature of 
105 ± 2°C for 24 hours, according to ISO 18134-2 
(2017). For characterization, the dried sample was 
grinded first with the Retsch SM 100 cutting mill for 
a preliminary size reduction and thereafter through the 
Retsch ZM 200 rotor mill.  

Ash content was measured by a Lenton 
EF11/8B muffle furnace according to ISO 18122 
(2015). The higher heating value (HHV) was 
determined by the Paar 6400 isoperibol calorimeter 
following the ISO 18125 (2017), while the lower 
heating value (LHV) was calculated from the higher 
heating value, according to ISO 18125 (2017).  
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Table 1. Biomass used for experimental and modeling analysis 
 

Biomass Group Appearance References Notes 

Grapevine Fruit Cultivar 
Tree Chipwood Proto et al. (2021) Vitis spp. Harvested in Calabria, Southern Italy 

Olive Fruit Cultivar 
Tree Chipwood Proto et al. (2021) Olea spp. Harvested in Calabria 

Southern Italy 

Citrus Fruit Cultivar 
Tree Chipwood Proto et al. (2021) Citrus spp. Harvested in Calabria 

Southern Italy 

Cultivars mix Fruit Cultivar 
Tree Pellet Vincenti et al. 

(2020) 

Mixed pellet of Citrus, Olea, and Kiwi 
(Actinidia spp) harvested in Calabria, southern 
Italy 

Wheat straw Straw 
Herbal Chipwood Paris et al. (2019b) Triticum aestuvum L. produced by the CREA of 

Monterotondo 

Rice straw Straw 
Herbal Chipwood Paris et al. (2019b) 

Oryza sativa L. imported from different areas of 
Pakistan (Punjab, Azad Jammu and Kashmir 
(AJK), and Sindh) 

Hemp Hemp 
Herbal Chipwood Not published Cannabis spp. Produced by the CREA of 

Monterotondo 

Forest mix Forest 
Tree Pellet Vincenti et al. 

(2020) 
Mixed pellet of fir (Abies spp), beech (Fagus 
sylvatica) and chestnut (Castanea sativa) 

Coffee SCG Pellet Colantoni et al. 
(2020; 2021) 

Coffea spp. Mixed pellet obtained with different 
sawdust percentages (0, 15, 25, 33, 66) 

 
The elemental composition, carbon content 

(C), hydrogen content (H), and nitrogen content (N) 
was measured with the elemental analyzer Costech 
ECS 4010 CHNS-O according to ISO 16948 (2015). 
 
2.3. Statistical analysis 

 
The statistical analysis was entirely conducted 

in R ver. 3.6.1. Different statistical tests and analysis 
resulted useful for the data comprehension. Since the 
biomass’ description was one of the goals of this 
study, differences between species were tested 
through a One-Way ANOVA at the 0.05 significance 
level, permitting to evaluate the importance of the 
biomass factor on energetic and compositional 
parameters. The individuation of such differences is 
subsequently obtained with the post hoc Tukey-HSD 
test, able to compare groups means and to define 
weather the variables assumed significant differences 
according to the plant species. Shapiro-Wilk and F 
tests were performed to evaluate both normality and 
homoscedasticity of biomass characterization 
variables. Since many variables didn’t show a 
Gaussian trend, the Friedman test and the Conover test 
were performed to understand the difference between 
biomass. The multivariate data analysis was 
conducted by Principal Component Analysis (PCA) to 
evaluate the relationships between biomass properties. 
The cluster analysis was performed by the Ward 
technique, whose aim is to achieve a hierarchical 
classification by minimizing the variance of the 
variables within each group. At each stage, the groups 
that produce the smallest increase in the total variance 
within the groups are merged (Ward, 1963). 

Since the characterization variables are neither 
normal nor homoscedastic, the quantile regression 
(QR) has been used to build linear models able to 
predict HHV from C, H, and N. This method results 

more accurate when the basic requirements for 
applying ordinary least squares (OLS) are not met, 
particularly in the presence of outlier values. Quantile 
regression is able to provide a much broader analysis 
of the relationships between variables than the OLS 
model. Over the years, QR has been used as an 
extension of the linear regression model and it allows 
to do the analogue of what linear regression does for 
the mean, on quantiles. By exploiting the estimated 
parameters, it is possible to consider the quantile value 
of the response variable, depending on a set of 
regressors. This allows to appreciate the behavior of 
the response variable not only in average but also in 
its entire distribution. By varying the quantile of the 
regression between zero and one (τ) it is possible to 
obtain the entire conditional distribution. To evaluate 
the forecast quality, the root means square error 
(RMSE), mean absolute error (MAE) and mean bias 
error (MBE), were calculated. The MBE gives 
information regarding the average forecast error 
representing the systematic error of a forecast model, 
MAE gives the forecast errors average magnitude, 
while with RMSE more weight is attributed to the 
largest errors (Kato, 2016). 

 
3. Results and discussion 

 
3.1. Proximate and Ultimate Analysis 

 
From the proximate and ultimate analysis (Fig. 

1), SCG resulted a biomass with peculiar 
characteristics, both from a compositional and an 
energetic point of view.  The samples listed in Table 1 
were grouped in three branches depending on the 
physical structure of the biomass: Coffee, Herbal and 
Tree (Fig. 1). Through the Friedman test applied to 
compositional variables, real differences are pointed 
out. It’s clear that SCG has more C and N percentages 
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(Fig. 1a-b) than herbaceous and arboreal biomass at 
the expense of H, which shows a very low content for 
SCG (Fig. 1c). Many other studies, concerning both 
biomass and hydrocarbons (Demirbas et al., 2018; 
Ozyuguran et al., 2018), relate the compositional 
analysis to the HHV. For biomass, in general, it is 
overt that C is strictly positively related to HHV. In 
this case, coffee is a very surprising material, 
inasmuch its HHV is significantly higher than any 
other biomass taken into account (Fig. 1d). Proximate 
analysis concerning humidity and ash reveals coffee 
as a biomass with a higher content in water and normal 
content of ash.  

Regarding the elevated humidity tenor (Fig. 
1e), it is due to the nature of SCG which derives from 
a process where coffee is crossed by water. In this 
case, processes related to transportation, stock and 
drying are fundamental (Schmidt Rivera et al., 2020). 
The other two kinds of biomass, arboreal and herbal, 
usually behave in a similar way except for C, HHV, 

and ash. Herbaceous biomass has the worst energetic 
characteristics with lower HHV and C content, and 
higher ash production during combustion (Fig. 1f). 
Such data indicate low potential in thermochemical 
conversion processes. 
 
3.2. PCA analysis 
 

Some of the trends described above can be 
more formally elucidated through the application of 
multivariate statistical techniques. Other studies 
already tried to classify different lignocellulosic 
biomass through a multivariate approach (Jenkins et 
al., 1998). Fig. 2 gives PCA results using the ultimate 
and proximate analysis for the 41 observations in the 
dataset. Differences between the four main classes 
have been highlighted in the figures: straw, coffee, 
wood pellet, and wood chip. Fig. 2 is a plot of the first 
principal component PC1 respect to the the second 
principal component PC2.  

 

 
Fig. 1. Boxplots of ultimate and proximate analysis parameters for Coffee, Herbal and Tree biomass. Carbon content (a), Nitrogen 
content (b), Hydrogen content (c), Higher Heating Value (d), Humidity (e) and Ash content (f). The boxes represent the minimum 

(Q1 - 1.5*Interquantile Range), 25th percentile (Q1), 50th percentile (Q2), 75th percentile (Q3) and maximum (Q3 + 1.5 
Interquantile Range).  Groups with different letter are significantly different by using post hoc Tukey-HSD test (p<0.05) 

 

 
 

Fig. 2. Principal Component Analysis biplot obtained with the parameters obtained 
from ultimate analysis and proximate analysis 
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These two components explain the 75.8% of 
the total variance in the data. PC1 has a strong 
negative correlation with HHV, C, and N, while a 
positive correlation is shown for ash and H. For PC2, 
the most influent parameter is humidity with whom is 
negatively correlated. From this grouping it is possible 
to appreciate how biomass vary depending on many 
factors. It is evident that woody biomass can vary their 
moisture content if they undergo a pelletizing process 
or not. Coffee is clearly an uncommon biomass with 
HHV and N higher than any other sample considered, 
as already seen in previous works (Colantoni et al., 
2021). Furthermore, the coffee group shows an inner 
variability explained especially by humidity, this is 
probably due to the different kinds of blend produced 
with many sawdust percentages which bring to the 
moisture content decrease. Close to the woody pellets 
are placed the hemp samples that, despite the different 
nature respect arboreal biomass, have comparable 
composition and energetic yield. Hemp is therefore 
confirmed as feedstock of interest for many purposes 
such as textiles, pharmaceutic and energetic (Qamar et 
al., 2021; Rheay et al., 2021; Vandepitte et al., 2020). 
Like all herbaceous and straw species, hemp presents 
higher ash production in combustion, but if compared 
to the other straw samples, the amount is irrelevant. 

Through the hierarchical cluster analysis (Fig. 
3) using the Ward’s minimum variance method are 
finally individuated four groups on which have been 
based the subsequent modeling evaluations. 
Principally, the arboreal biomass is divided in chipped 
and pelletized, while the SCG and straw biomass form 
other two distinct groups. Comparing such results with 
the trends shown through the ultimate analysis, three 

different linear models are proposed to better 
understand the link between composition and heating 
value in many kinds of biomass. 
 
3.3. Correlations and modeling 
 

From the compositional analysis it has been 
possible to fix a model for the HHV estimation for the 
biomass considered. Usually for statistical analysis, 
ordinary least squares (OLS) are mostly used and the 
fit quality evaluation is made by the coefficient of 
determination (COD) R2. However the RQ models are 
more robust since they permit a more complete 
analysis of the conditional distribution of a variable 
depending on many predictors (Ranganai, 2016). 

Despite the R2 isn’t properly used for quantile 
regression models, which are based on median or other 
quantiles, its calculation strengthens anyway the 
models built on the ultimate analysis and resumed in 
Table 2.When the complete dataset is considered, a 
strong correlation (R2=0.85) is indicated for the Eq. 
(1). This model shows the smallest MBE, indicating a 
reduced systematic error to under and over forecast, 
but high MAE and hence higher forecast errors 
magnitude (Table 2). 

Focusing deeply on the different groups 
identified through the PCA analysis, different models 
can be proposed for the estimation of HHV from the 
ultimate analysis. Since SCG has shown a relation 
between ultimate analysis and HHV closer to the 
herbaceous plant, the dataset has been divided into two 
groups: herbaceous and arboreal. Two different 
regression models are applied to these sub-datasets 
and the equations are resumed in Table 2. 

 

 
 

Fig. 3. Ward hierarchical cluster analysis of the biomass 
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Table 2. Models and relative accuracy parameters 

 
Group Model R2 RMSE MAE MBE Eq 

Complete HHV = 0.14C + 1.22N - 0.16H + 11.81 0.85 0.1 0.58 0.01 (1) 
Herbaceous HHV = 0.38C + 1.65N + 0.37H - 2.64 0.96 0.06 0.38 0.02 (2) 
Arboreal HHV = 0.08C - 0.49N - 0.03H + 14.93 0.51 0.2 0.23 0.07 (3) 

 
The higher variability in compositional 

analysis shown by arboreal species (Fig. 1) is reflected 
in the model quality too; for this group the smallest 
coefficient of regression R2 has been calculated. 
Furthermore, such variability is detected by the RMSE 
too, which indicates the presence of large errors in the 
forecast (Table 2). The quantile regression fitted for 
herbaceous resulted the most accurate, with the 
smallest errors (RMSE = 0.06). When the calculated 
and predicted HHV values are compared, it can be 
seen that the plotted values are close to the curves of 
HHV estimated-HHV real, indicating good correlation 
accuracy (Fig. 4). In particular (Fig. 4), four quantile 
regression lines, in addition to the medians in bold, 
have been estimated for four values of τ (0.1, 0.25, 
0.75, 0.9) for each model proposed. The same graph 
shows in blue the quantile regression lines for the 
herbaceous group, in black the arboreal ones, and in 
red the complete dataset regression lines. The lines 
estimated through quantile regression include almost 
all points on the graph.  

Eq. (2) seems to be more accurate compared to 
Eq. (1) and (3) considering the presence of more 
outliers produced by the latter. In the upper-right 
corner of the graph are distinguishable coffee HHV 
values confirming the high energetic power of this 
matrix; in the middle part of the graph are present 
mostly arboreal species with some introgression of 
other herbaceous species, principally hemp; in the 
low-left corner the three straw biomasses bring out 
their lower predisposition to energy exploitation. 

Many empirical correlations have been studied 
to predict the HHV from elemental composition, 
mostly for coals and other hydrocarbon fuels (e.g., 
biomass, char, oil) as well. Since it is well established 
that carbon and hydrogen contribute significantly to 
the biomass energy potential (Sheng and Azevedo, 
2005), these two constituents are taken into account 
deeply. When hydrocarbons are evaluated it’s known 
that a higher H content brings to higher HHV; 
saturated hydrocarbons are the simplest of the 
hydrocarbon species, they are composed entirely of 
single bonds, saturated with hydrogen and show 
higher HHV respect the unsaturated species with 
stronger bonds (Demirbas et al., 2018). For 
lignocellulosic biomass, the same reasoning can’t be 
valid. In literature is confirmed that a positive 
correlation exists between C and HHV, while for 
hydrogen and HHV a clear trend isn’t always observed 
(Jenkins M. et al., 1998). 

In Sheng and Azevedo (2005), for example, the 
positive correlation observed between H and HHV is 
limited to a slight trend visible from data plotting 
without any statistical confirmation. In the present 
study, a positive correlation between C and HHV is 

observed (Fig. 5c) (Spearman: ρ = 0.74), but when H 
is considered (Figs. 5 d-f) , contrary to what is 
expressed in other works in literature (Mateus et al., 
2021) a negative correlation (Spearman: ρ = - 0.64) 
can be observed (Fig. 5f). This behavior is strongly 
driven by SCG, which presents low H content and 
high HHV, differentiating itself from the other 
biomass considered in the models found in literature. 
Moreover, if we consider all biomass except SCG, the 
trend between H and HHV is negative tending to 0 
(Spearman: ρ = -0.07), showing an absence of 
correlation between these two variables (p-value = 
0.72). H content and HHV of arboreal species isn’t 
correlated (Spearman: ρ = 0.05) (Fig. 5d), while only 
herbaceous species, including SCG, showed a 
negative correlation between the two parameters 
(Spearman: ρ = -0.54) (Fig. 5e).  

When C-HHV correlation is examined, it can 
be noted that SCG better follows the trend shown by 
the herbaceous plants and the correlation between C 
and HHV for only SCG and herbaceous species 
increases till 0.92 (Fig. 5b). If only arboreal species 
are considered, the correlation decreases due to the 
higher variability of the compositional parameters. It 
is also noticeable that the quantile model fitted for 
only the arboreal species (Fig. 5a) underestimates the 
higher values of HHV and overestimates the lower 
ones.  

This is probably due to the diversity of the 
biomass considered; for these biomass different 
storage methods have been used, furthermore the 
structural composition of tree biomass is usually 
considered more heterogenous with samples varying 
in bark and wood percentage and therefore in lignin 
and cellulose content (Barmina et al., 2013). 
 

 
 

Fig. 4. Comparison between real and estimated HHV 
values for the three models 
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Fig. 5. Correlations between C and HHV for arboreal species (a), herbaceous (b), and for the whole dataset (c). 

Correlations between H and HHV for arboreal species (d), herbaceous (e), and for the whole dataset (f) 
 

From the observations mentioned above, it 
follows that the relation between elemental 
composition and energetic yield isn’t so homogeneous 
when the datasets comprehend many kinds of species 
with different physiology and physical structure. 
Studies that deepen and do not neglect such 
differences, are useful for a better comprehension of 
the processes involved in biomass energetic 
valorization, permitting better and wider modeling. 
 
4. Conclusions 
 

Through the PCA and cluster analysis, it has 
been possible to group the biomass and understand the 
energetic behavior depending on the ultimate and 
proximate analysis. In the two main groups 
highlighted (herbaceous and arboreal), linear quantile 
models have been applied for the prediction of HHV 
from compositional analysis (C, H, N). Such models 
show a good accuracy and confirm themself as a 
useful tool able to give information on biomass energy 
potential.  

Arboreal species were marked by a higher 
variability in composition and the model fitted to them 
resulted less accurate, while Eq. (2) gave the best fit 
for herbaceous. Despite the typical differences 
between the studied biomass, Eq. (1) was able to give 
a good estimate of HHV. 

In these models and calculations, SCG always 
shows the best energetic yield and the predicted values 
of each model concerning SCG are able to give 
extremely accurate values for this uncommon 
biomass. Straw biomass is the worst feedstock from 

the energetic point of view while arboreal and hemp 
place themselves between SCG and straw, but 
especially arboreal ones have already good and easy 
ongoing practices (harvesting, storage and drying) for 
their exploiting, thus resulting biomass easier to use in 
thermochemical processes. 
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