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Abstract 
 
Studies on the biological composition of activated sludge flocs in the operating conditions of wastewater treatment plants are 
generally limited to the estimation of respiratory activity or to the analysis of images made with optical microscopy. The results of 
these studies indirectly provide information on the microbiological composition. To date, molecular methods, although very 
promising, have not found a wider application in operational monitoring of wastewater treatment plants. In this paper, the 
supernatant was under discussion as a potential source of sampling for analyzing microbial quality changes. The results of 270 
activated sludge and treated wastewater samples showed that the smallest flocs leaching to the outflow constitute a group of 
microorganisms that is most numerous. The studies carried out using the fluorescence in situ hybridization method have shown 
that the microorganisms responsible for the nitrification processes occur both in activated sludge and supernatant. Image analysis 
of microorganisms from activated sludge and supernatant stained with Live/DEAD reagent indicate that microflocs and bacteria in 
the outer flocs, which are relatively loosely attached to the flocculent matrix are more exposed to external factors. The results 
suggest that it is advisable to find information about the condition of the whole community especially for group of particles in the 
supernatant. In addition, the authors recommend using machine learning methods to evaluate predicting anomalies in biological 
composition of activated sludge flocs. 
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1. Introduction 
 

The activated sludge process is the most 
commonly used one in municipal wastewater 
treatment (Fiałkowska and Pajdak-Stós, 2018; Seviour 
and Nielsen, 2010). Analytical parameters such as 
oxygen uptake rate (OUR), ammonium uptake rate 
(AUR), nitrate uptake rate (NUR), phosphate release 
rate (PRR) and phosphate uptake rate (PUR) are used 
to monitor the biochemical activity of activated sludge 
(Mąkinia, 2010). However, they do not provide 
sufficient information about the microbiological 
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composition of the sediment. Currently, polymerase 
chain reaction (PCR), gene sequences and 
fluorescence in situ hybridization (FISH) are the most 
frequently used molecular methods (Domańska et al., 
2014, Ferrera and Sánchez, 2016). 

The FISH method, based on fluorochrome-
labeled oligonucleotide probes, appears to be more 
accessible (Amann et al., 1995; Delong et al., 1989; 
Nielsen et al., 2009). This revolutionary approach 
allowed scientists to identify microorganisms in 
environmental samples (Zeng et al., 2016). Numerous 
FISH applications in the field of wastewater treatment 
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have been implemented towards the study of 
microorganisms involved in the elimination of 
biological nitrogen and phosphorus (Wagner and 
Haider, 2012). Molecular techniques have contributed 
to a better understanding of polyphosphate and 
accumulating glycogen organisms (PAOs, GAOs) (Lu 
et al., 2017), mechanisms related to metabolic 
function of microorganisms, the formation process 
and flocs structure as well as activated granular sludge 
(Winkler et al., 2012). 

Advanced microscopic techniques are required 
to understand the mechanism of sludge flocs 
formation and the interaction between them, but 
despite the great development of molecular methods 
and rich data on microbial communities, it is still 
difficult to translate lab findings into implementable 
solutions at full-scale wastewater treatment plants 
(WWTPs). 

Research results have not been practically 
applied to monitor changes in the population of 
microorganisms in activated sludge yet (Cydzik-
Kwiatkowska and Zielińska, 2016). Studies confirm 
the influence of modification in the composition of 
sewage flowing into the bioreactor on changes in the 
composition of microorganisms present in activated 
sludge (Stalder et al., 2013). Because nitrifiers are 
highly sensitive to inhibitory compounds, changes in 
ammonia oxidizing bacteria community could be a 
consequence of e.g. increase of toxic substances in 
raw wastewater. The presence of low concentrations 
of some compounds, such as active ingredients of 
drugs, antibiotics or estrogens, also exerts unfavorable 
ecological effects (Kim and Aga, 2007; Song et al., 
2018). This is due to the fact that pharmaceuticals are 
common and incompletely removed by 
microorganisms during wastewater treatment. 
Currently, microplastics are being intensively studied 
mainly because they are not retained entirely at 
WWTPs and are present in the outflow (Koelmans et 
al., 2019). So far, its ecotoxicological effects on 
aquatic organisms is poorly understood (de Sá et al., 
2018). 

At present, there is a need to search for tools 
that will inform about the loss of microorganisms 
responsible for the nitrification/denitrification 
processes in order to reduce the risk of rapid efficiency 
collapse and leakage of non-treated sewage into the 
outflow. The increasingly greater possibilities of 
digital data storage have resulted in the development 
of analytical data mining techniques and mathematical 
modelling, which can be used, among other things, to 
support the consulting processes in the field of 
WWTPs exploitation (Guglielmi et al., 2020). These 
solutions are not commonly used to monitor processes 
occurring at WWTPs, but they are desirable from the 
point of view of extracting valuable information about 
their quality. Modern machine learning techniques 
(decision and regression trees) were used at the 
research stage to model and predict the functionality 
of WWTPs, e.g. by Atanasova and Kompare (2002). 
For this purpose, quantitative and qualitative data 
originating, among others sources, from 

microbiological analyses were used, and the obtained 
results indicate that this type of analysis makes it 
possible to predict abnormal operating conditions of 
WWTPs, such as activated sludge swelling. In the 
past, artificial intelligence (AI) was also used to assess 
the quality of wastewater treatment based on activated 
sludge systems, including Kohonen Self Organizing 
Maps (KSOM), backpropagation artificial neural 
networks (BPANN) and adaptive-network-based 
fuzzy inference system (ANFIS) (Rustum, 2009). 
Moreover, the results presented by Harrou et al. 
(2018) show the capability of the developed strategy 
integrating a deep belief networks (DBN) model and a 
one-class support vector machine (OCSVM) to 
monitor the WWTP, suggesting that it can raise an 
early alert to abnormal conditions. In Poland, data 
mining techniques are not used to assess the 
functionality of sewage treatment plants. The 
approach presented by Szeląg et al. (2018) 
demonstrates the usefulness of cascade neural 
network, support vector machines and boosted trees to 
forecast the mixed liquor suspended solids (MLSS) 
and food-to-mass ratio (F/M) of the activated sludge 
in the bioreactor. In literature on the subject, the most 
common application of advanced data mining 
techniques is the detection of sludge swelling (Amaral 
et al., 2013; Deepnarain et al., 2019; Han et al., 2018), 
while there is no mention of classification tree method 
used to support the image analysis of Live/DEAD-
stained microorganisms. Mesquita et al. (2016) 
proposed Partial Least Squares (PLS) method, one of 
the regression techniques in machine learning, to 
correlate quantitative image analysis information and 
the key parameters. 

The aim of the experiments was to check 
particle size distributions (PSD) in activated sludge 
and treated wastewater (supernatant), then to confirm 
with the FISH method that the bacteria responsible for 
the nitrification/denitrification process are leached 
from the activated sludge into the supernatant. The 
next stage was intended to verify whether more 
convenient methods for staining microorganisms such 
as Live/DEAD supported by machine learning 
methods (bagging decision trees) could be a source of 
valuable information about the condition of the 
microorganisms. Studies on PSD in treated 
wastewater and activated sludge from six mechanical-
biological WWTPs located in Poland (Lower Silesia), 
were carried out from 2006 to 2010. The FISH method 
and Live/DEAD staining using activated sludge 
samples form Janówek WWTP (Poland) were carried 
out in March 2016 and June 2019 respectively. 

 
2. Material and methods 

 
2.1. Scope of the research 

 
The tests were carried out on samples of 

activated sludge and treated wastewater derived from 
six mechanical-biological WWTPs located in Lower 
Silesia, Poland. The WWTPs were marked with 
symbols A to F. Selected WWTPs were characterized 
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by different time of operation and technological 
solutions. Two analyzed objects, marked A and D, 
worked in the flow reactor system, whereas objects E 
and F in the Sequencing Batch Reactor system (SBR). 
Such a varied selection of WWTPs allowed for a wider 
assessment of the activated sludge structure, PSD, 
microbiological recognition and drawing individual 
conclusions. 

Activated sludge samples were taken from 
nitrification chambers and from SBR reactors during 
the nitrification phase. Treated wastewater samples 
from the flow system were collected at the outflow of 
secondary settling tanks and in the decantation phase 
from SBR reactors. Samples from each WWTP were 
collected in plastic containers in the morning, 
transported to the laboratory and prepared for further 
analysis. Studies on PSD in treated wastewater and 
activated sludge were carried out from 2006 to 2010 
and a total of 270 samples was analyzed. The obtained 
results of the particle number distribution (PND) tests 
in activated sludge and in treated wastewater 
contributed to conducting microbiological tests using 
the FISH method in activated sludge samples and in 
the supernatant. These tests were carried out using 9 
activated sludge samples collected from Janówek 
WWTP (Wroclaw, Poland). 

Training and validation model of the machine 
learning used data from the Live/DEAD staining of 
fresh activated sludge taken from Janówek WWTP in 
June 2019. For testing the model, data of activated 
sludge and supernatant after 24 hours (in 4ºC), as well 
as with additional sodium hypochlorite after 1 and 24 
hours of reaction, were considered. 

 
2.2. Laser granulometry – sample preparation and 
measurements 

 
Research on the activated sludge structure and 

PSD was carried out using the Mastersizer 2000 laser 
granulometry with a particle size range of 0.01 to 2000 
μm, from Malvern Instruments Ltd. The method has 
been successfully used in studies on environmental 
pollution as a classic grain size analysis (Dąbrowska 
et al., 2016) and in studies on suspended solids as well 
as sediments in sewage and waters (Bawiec et al., 
2017). 

Total sample volume of treated wastewater for 
one measurement was about 700-800 mL. Activated 
sludge samples with high mass concentration had to 
be diluted to obtain proper values of laser light 
obscuration (10%  20%). After that particles were well 
dispersed to avoid multiple reflections in the 
measurement cell of the laser granulometric (Bizi and 
Baudet, 2006; Bushell, 2005). The laser light 
scattering analysis enabled to determine distributions 
in the form of volume function f(vi) and the particle 
number function f(ni) (the final data was based on 
several replications), as well as the values of mean 
diameters D (1.0) and D (3.2). In addition, analyses 
using laser granulometric were carried out in the area 
of activated sludge structure by assessing the fractal 
dimensions (DF). The DF were calculated from the 

raw light scattering data and estimated using linear 
regression, and the student's t distribution was used to 
determine the confidence intervals of the DF estimator 
according to the method described by Guan et al. 
(1998). The received DF estimation errors for all 
activated sludge samples did not exceed ± 0.05. 
 
2.3. FISH - sample preparation and analysis 
 

The samples of activated sludge and 
supernatant were analyzed with the FISH method. To 
obtain the supernatant from the sludge, sludge samples 
were subjected to 30 minutes of sedimentation. Next 
the supernatant was centrifuged 3 times at 5000×g for 
5 minutes at room temperature to obtain the right 
volume of sludge (pellet). 

After this time the pellets from supernatant and 
activated sludge were washed in phosphate buffered 
saline (1×PBS) and fixed in 4% paraformaldehyde. 
The FISH procedure was carried out according to 
Amann et al. (1995). Well suspended sludge was 
placed on slides and air dried. The following probes 
for hybridization were applied: EUB338 (universal 
oligo probe which covers 90% Bacteria from 
Bacteria domain), NSO1225 (beta-proteobacterial 
ammonia-oxidizing bacteria) which targets ammonia 
oxidizers (beta-AOB), as well as NIT3 (Nitrobacter 
spp.) used to detect nitrite oxidizers (NOB) (Nielsen 
et al. 2009). Probe NSO1225 was labelled with the 6-
Carboxyfluorescein dye (6-FAM) and NIT3 was 
labelled with carboxy-X-rhodamine (ROX). EUB338 
was labelled with 6-FAM or ROX depending on the 
specific probe. Hybridization was performed with 
different stringency at 35%, 40%, respectively for 
NSO1225, NIT3 probes and 35-40% for EUB338 
probe. The hybridization solution contained 35% or 
40% formamide, 0.9 mM NaCl, 20 mM Tris-HCl (pH 
7.4), and 0.01 % sodium dodecyl sulfate. Fluorescence 
labelled probes were mixed with the hybridization 
solution. Approximately 10 μL of that mix was added 
to each sample well and incubated in a hybridization 
chamber at 46°C for at least 3 hours in the dark. The 
chamber included saturated filter paper with excess 
hybridization buffer. After the hybridization step all 
slides were gently rinsed with pre-warmed washing 
buffer in the dark at 48°C for 30 min. For total cell 
staining DAPI was added in a final concentration of 1 
μg/mL. Slides were examined using confocal 
microscopy (Nikon Eclipse Ni-E C2, Japan) equipped 
with 5-megapixel color digital camera (DS-Fi1c). The 
following light filter sets were used: UV-2A for DAPI 
(excitation 330-380, dichroic mirror 400, barrier 
filters 420), B-2A for 6-FAM (excitation 450-490, 
dichroic mirror 505, barrier filters 520) and G-2A for 
ROX (excitation 510-560, dichroic mirror 575, barrier 
filters 590). The analysis was conducted using the CFI 
Plan Apo 60×oil objective and pictures were taken 
with Nis-Elements AR 4.30 software. 
 
2.4. Live/DEAD–staining 
 

Two types of activated sludge samples with no 
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additives (100 mL) and activated sludge with 100 mL 
sodium hypochlorite (0.8 mg/L of free chlorine) were 
prepared. After 1 and 24 hours, sample of sediment 
and supernatant were collected. The samples of 
activated sludge and supernatant were analyzed using 
the Live/DEAD reagent of Thermo Fisher (Nr L7007) 
on a Nikon Eclipse Ni-E C2 microscope. A mixture of 
propidium iodide and SYTO 9 was added to 1 mL of 
each of the samples and left for 15 minutes. Then 5 μL 
of the solution was used for the study. To prevent the 
sample from fading, BacLight TM mounting oil (from 
Life Technologies) was added on the dried sample. 
The analysis was conducted using confocal 
microscopy as described in Section 2.3. A number of 
15 photographs were taken for each sample. Data on 
the green and red frequency of fluorescence 
occurrence were obtained using the Nis-Elements AR 
4.30 software. 
 
2.5. Machine learning - bagging decision trees 
 

The classifier learning process was based on 
the input data: frequency of red fluorescence, 
frequency of green fluorescence and quotient of 
frequency of red/green fluorescence. The grouping 
factor was the sample collection site, therefore the 
activated sludge from the activated sludge chamber 
was tested as the first classification class, and 
supernatant water as the second-class classification. 
MATLAB 2019 a software with the Classification 
Learner library was used for calculations. 

The training data set comprised the results of 
analyses of 70% of photographs taken with a confocal 
microscope and the corresponding data in a digital 
version, which include the frequency of green and red 
fluorescence for fresh samples. The validation data set 
included the results of analyses of 30% of fresh sample 
photographs, while the testing process was carried out 
on data obtained during additional experiments. They 
were based on a sample image analysis conducted 24 
hours after sampling, 1 hour after adding chlorine to 
the fresh sample and 24 hours after adding chlorine to 
the fresh sample. The experimental part was intended 
to show whether the emergence of abnormal 
conditions in the form of increasing the age of the 
sediment and adding chlorine will cause the classifier 
to be able to recognize the condition of 
microorganisms as abnormal. 

The accuracy of the classifier in the two 
groups-activated sludge chamber and supernatant 
water – was determined on the basis of percentage 
accuracy and indicators accompanying the confusion 
matrix. These include values of true positive rate for 
individual real and predictive classes, known in the 
literature under the acronym TPR, the percentage of 
false negative rate (FNR), the positive predictive value 
(PPV) and the percentage of false discovery rate 
(FDR). In addition, receiver operating characteristic 
(ROC) curves and the associated areas under the 
graphs, so-called area under the ROC curve (AUC), 
were used. 
 
3. Results and discussion 
 
3.1. Particle size distributions 

 
This research has shown that the PSD 

presented in the form of the volume function f(vi) 
differ between individual WWTPs. Table 1 presents 
the differences between the obtained values of mean 
diameters, taking into account both the particle 
number (D (1.0)) and the particle volume (D (4.3)). 
Due to the large amount of data, only the average 
values calculated for individual WWTPs were 
presented. 

Due to the spatial structure of the activated 
sludge flocs, different DF values were observed for 
each WWTP. It was noticed that for all WWTPs the 
activated sludge in the biological reactors had a more 
compact structure (DF = 1.99-2.31) and a high degree 
of compaction, unlike treated wastewater from the 
settling tanks (DF = 1.41-2.21). The average DF 
values obtained for all samples from a given WWTP 
are shown in Table 1. The size of analysed WWTP 
was compared using the population equivalent (PE) 
parameter which indicates the multiple of the load of 
pollutants contained in the wastewater in relation to 
the unit load of pollutants in household wastewater 
discharged per capita per day.More compact structure 
of activated sludge flocs from bioreactors adversely 
affected the analysis and hindered the procedure of 
microorganisms identification. The flocs from the 
outflow had lower density, which can simplify the 
procedure for identifying bacteria by using lower 
dilution of the sample. 

 
 

Table 1. Set of mean diameters and fractal dimensions determined on the basis of distributions of volume function f(vi) for treated 
wastewater and activated sludge samples (PE - population equivalent), D (1.0) - particle number, D (3.2) - particle volume, DF - 

fractal dimensions) 
 

WWTP PE 
Activated Sludge Treated Wastewater 

D(1.0), μm D(3.2), μm DF D(1.0), μm D(3.2), μm DF 
A 14800 0.945 21.738 2.27 0.999 20.450 2.05 
B 1972 4.645 51.153 2.18 3.006 45.287 2.02 
C 6500 0.745 12.413 2.23 0.588 7.034 1.94 
D 7700 5.084 81.888 2.08 2.413 46.382 1.88 
E 9829 3.282 43.814 2.15 1.857 26.829 1.77 
F 2748 4.800 65.476 2.16 1.243 12.405 1.96 
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Significant differences were also noted in the 
structure of suspensions comparing the f(vi) and f(ni) 
distributions. A few-micrometer microflocs 
constituted numerous groups on the f(vi) distributions. 
Large diameter particles determined percentage 
values, while the small ones are usually ignored. As a 
result of transforming the f(vi) into the f(ni) 
distribution, flocs between 2 and 10 μm constituted the 
biggest part in particle number of activated sludge and 
treated wastewater. The smallest identified particles of 
single bacterial cell size were in the range of 0.36 to 
3.56 μm in activated sludge and 0.25 to 3 μm in treated 
wastewater. Differences in the particles organization 
on the f(vi) and f(ni) distribution are particularly 
visible while comparing the particle size of activated 
sludge flocs from 1 to 10 μm and from 10 to 1000 μm. 
In Fig. 1, the dashed lines indicate sizes from 1 to 10 
μm and from 10 to 1000 μm, along with information 
on the particles percentage and particles volume. For 
the presented case, 2% of volume constituted 94% of 
the particles in the size from 1 to10 μm. It is advisable 
to find information about the condition of the whole 
community especially for this group of particles. The 
majority of particles forming the activated sludge flocs 
were really fine and constituted a small mass but 
occurred in large quantity. It was also recognized that 
the analysis of treated wastewater in terms of PSD is 
adequate for the analysis of activated sludge 
distributions (Burszta-Adamiak et al., 2010; Kuśnierz 
and Wiercik, 2016), but it takes place without 
disturbances from flocs with a compact structure. No 
changes in the fine PND were noticed, which provides 
a rationale for the implementation of the analysis 
procedure using supernatant. 

 
 

Fig. 1. Particles volume and number of di diameters in 
the total volume/number of activated sludges collected 

from the E WWTP 
 
3.2. FISH analysis 

 
The results obtained with the laser 

granulometric tests allowed to develop the argument 
for the presence of microorganisms responsible for the 
wastewater treatment process in the supernatant. The 
FISH method was used to confirm this argument. A 
particular advantage of the method is the direct 
visualization of microorganisms under the 
microscope. The need to target specific 
microorganisms and the lack of probes capable of 
directing all bacteria are the main disadvantages of the 
method. Figs. 2-3 present the results of the NSO1225 
probe used to identify ammonia-oxidizing bacteria 
from the beta-AOB group and the NIT3 probe 
identifying bacteria from the Nitrobacter spp.

 

 
 

Fig. 2. FISH analysis for determination of beta-AOB in the biomass of activated sludge (a-c) and supernatant (d-e) (7.01.2016); 
a) and d) hybridizations with the specific oligo probe NSO1225; b) and e) hybridizations with the universal oligo probe EUB388; 

c) and f) DAPI staining. Scale bar 20 μm for a-c and 10 μm for d-f 
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Fig. 3. FISH analysis for determination of Nitrobacter spp. in the biomass of activated sludge (a-c) and supernatant (d-f) 
(7.01.2016); a) and d) hybridizations with the specific oligo probe NIT3; b) and e) hybridizations with the universal oligo probe 

EUB388; c) and f) DAPI staining. Scale bar 20 μm for a-c and 10 μm for d-f 
 

The research has shown that the beta-AOB and 
Nitrobacter spp. occur both in activated sludge and 
supernatant. This confirmed that the bacteria 
responsible for the nitrification/denitrification process 
are leached from the activated sludge into the 
supernatant. In recent years, there has been a lot of 
interest in the viability and cultivability of bacteria. 
The scientific research indicates that some bacteria are 
viable, but there are no tools to grow them, some 
bacteria lose their ability to reproduce for various 
reasons, and some under certain conditions remain 
dormant (Kell et al., 1998). This confirms that viable 
bacteria do not always carry out the wastewater 
treatment process effectively. Frølund et al. (1996) 
presented that activated sludge consisted mainly of 
protein (46-52% of dry matter), humid compounds 
(18-23% of dry matter) and carbohydrates (17% of dry 
matter). The proportions of individual components 
varied depending on the procedure or analytical tools, 
however, the mass of bacterial cells generally did not 
exceed 10-15% of the organic fractions of the 
sediment. Figs. 2-3 show a larger amount of 
extracellular polymeric substances (EPS) in the flocs 
taken directly from the activated sludge chambers than 
microflocs from supernatant obtained after 
sedimentation. The bacteria separated from the floc 
are likely to be a group of microorganisms that is most 
vulnerable to the quality of sewage inflow, which 
often contains pharmaceuticals or other toxic 
substances. As a consequence of difficulties 
associated with the survival of bacteria outside the 
flocs, the identification of microorganisms in the 
supernatant allows to draw conclusions about the 
condition of bacteria in the activated sludge chambers. 
Their presence or absence on the outflow as well as 
some transformations could indicate the quality of 
wastewater treatment process and shorten the time of 
reaction before total nitrification collapse. 

A couple years ago, monitoring at water 
treatment plants was improved with the method of 
continuous monitoring of the microbiological 

composition (Højris et al., 2016). The device is able to 
measure total number of bacteria within a few minutes 
based on 3D images. This sensor uses databases of 
physical particle parameters and is able to recognize 
with a high probability whether a given particle is a 
bacterium or not. In the case of WWTPs, it is desirable 
to know the condition of bacteria responsible for the 
nitrification/denitrification processes. Despite the 
high complexity of reactions occurring in the reactor, 
the efforts are made to explain these phenomena (Fig. 
4). 

 

 
 

Fig. 4. The approach for the microorganisms identification 
in the supernatant 

 
Micro flocs and bacteria in the outer flocs are 

relatively loosely attached to the flocculent matrix and 
more exposed to external factors. The level of activity 
of the microorganism in aeration tank is related to the 
fluctuation of dissolved oxygen (DO), pH and 
temperature (Cho et al., 2014; Gnida et al., 2016; 
Harja et al., 2016). Although reaction, temperature and 
oxidation might be partly controlled at WWTPs, there 
are many crucial factors concerning incoming sewage 
that cannot be managed, especially at small WWTPs. 
Surfactants can inhibit microorganism activity, 
causing fragmentation of flocs and lysis of protozoa 
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cells (Dereszewska et al., 2015). The increasing 
salinity (above 1–2%) also inhibits the activity of 
sludge microorganism, destroys enzymatic activity of 
microbes and leads to biodiversity reduction (He et al., 
2017). Moussa et al. (2006) presented that 
Nitrosomonas europaea and Nitrobacter sp. were the 
only nitrifiers present at high salt concentration in 
sludge. What is more, increasing salinity can cause the 
death of salt-intolerant microorganisms (Wang et al., 
2015). Microbial community can change at different 
COD/N ratios when treating saline wastewater (Wang 
et al., 2018). While describing the effect of antibiotics 
on the denitrification process, Roose-Amsaleg and 
Laverman (2016) noticed that less diverse community 
is more vulnerable than a diverse one. According to 
Schmidt et al. (2012), antibiotics are not biodegraded 
in artificial wastewater and, depending on the dose, 
nitrification was inhibited. Despite many studies in 
this field, there are still big gaps in the knowledge of 
ecotoxicological data on antibiotics (Välitalo et al., 
2017). 

Considering the abovementioned findings, it 
seems reasonable to search for answers connected 
with influence of undesirable factors on activated 
sludge population in activated sludge chambers and 
supernatant. For this purpose, further research was 
carried out using the Live/DEAD staining and 
machine learning. 

 
3.3. Live/DEAD staining and machine learning 

 
Following previous observations, the machine 

learning model data from the Live/DEAD staining of 
activated sludge and supernatant were considered. 

Additionally, an undesirable external factor in the 
form of sodium hypochlorite was introduced, which 
affects the condition of the activated sludge. 

Fig. 5 presents the staining results (Fig. 5a,c) 
and the graphs of intensity and frequency of green and 
red fluorescence (Fig. 5b,d) obtained in the Nis-
Elements AR 4.30 program. It can be seen that a 
greater number of dead or damaged cells (Fig. 5c) 
results in higher frequency of red fluorescence than 
green fluorescence (Fig. 5d). Fifteen photographs 
were taken for each sediment sample. For each 
photograph, 250 data on intensity, frequency and ratio 
of red to green fluorescence were obtained. It made it 
possible to collect 11 250 data for each sample. The 
data was then used in the machine learning process. 
 
3.4. Training and validation dataset 
 

The best classifier accuracy was obtained using 
an ensemble classifier (bagging decision trees). The 
overall accuracy of the learning process in correctly 
matching the samples to the two groups – Activated 
Sludge (AS) and Activated Sludge Supernatant (ASS) 
– was 99.2%.  

The TPR and PPV ratio for the AS class was 
obtained at the level of 99.0% with FNR and FDR of 
1%, while for ASS: TPR, PPV> 99% with FNR and 
FDR <1%. Subsequently, the accuracy of the 
classifiers was assessed using the ROC curves. The 
vertical axis of the ROC curve, which describes the 
values of the TPR match index, is called the sensitivity 
axis, while the horizontal axis determines the 
frequency of false positive rate FPR and it is called the 
specificity axis. 

 

 

 

 
(a)  (b) 

 

 

 
(c)  (d) 

 

Fig. 5. Microorganisms from the activated sludge (a) and supernatant (c) stained with Live/DEAD reagent  
and the graph of intensity vs. frequency of (red/green) fluorescence for the activated sludge (b) and supernatant (d) 
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As part of the classification, it is necessary to 
determine the optimal cut-off point of the ROC curve, 
which indicates a balance between the sensitivity 
parameter and the specificity of the classifier. The 
most optimal cut-off coordinates are values equal to 0 
for specificity and 1 for sensitivity-i.e. the (0,1) 
coordinates (Gajowniczek et al., 2014) 

In order to determine the accuracy of the 
classifier, the area under the ROC curve graph, the so-
called AUC is a very important parameter. The closer 
the AUC parameter is to 1, the higher the match 
accuracy of the classifier. It is assumed that the AUC 
in the range of 0.9-1.0 has a very good match of 
classifier, 0.8-0.9 is good, and 0.7-0.8 is satisfactory. 

Fig. 6 presents the ROC curves for the two 
adopted classification groups: AS (Fig. 6a) and ASS 
(Fig. 6b). In terms of the AUC parameter, a very good 
classification accuracy was obtained for both classes 
(AUC = 1.00). It is also indicated by the cut-off point 
of both curves, which is close to the coordinates (0,1). 

 

 
(a) 

 
(b) 

 
Fig. 6. Receiver Operating Characteristic curves for 

created classification groups: activated sludge (a) and 
activated sludge supernatant (b) 

 
The classifier validation process, carried out 

for data obtained from the analysis of five photographs 
of fresh samples, showed that the classifier is to a 

greater extent able to recognize samples coming 
directly from the activated sludge chamber (99.6%), 
while to a lesser extent (41.9%) from the supernatant. 
It is caused by higher condensation of activated sludge 
flocs in the chamber than in the supernatant water, in 
which they are significantly dispersed. Although the 
operational condition of a WWTP with activated 
sludge can be more correctly diagnosed on the basis of 
samples obtained directly from the activated sludge 
chamber, it was necessary to verify the behaviour of 
the supernatant water samples and the activated sludge 
chamber samples in further experiments, which were 
carried out as part of the testing. 
 
3.4. Training dataset 
 

The results of the classifier testing process, 
which was based on increasing the sludge hold time 
(up to 24 hours) and adding sodium hypochlorite and 
analysing the image after 1 and 24 hours, are presented 
in Fig. 7. The results of Live/DEAD staining indicate 
that for the AS class, the accuracy gradually decreases 
from 99.6% for fresh sample validation to 67.3%. The 
addition of sodium hypochlorite resulted in a 71.6% 
accuracy after 1 hour and 75.7% after 24 hours. The 
higher accuracy of real and predictive samples results 
from the unambiguous destruction of the activated 
sludge floc structure and greater confidence of the 
classifier concerning grouping. This conclusion is 
confirmed by images obtained directly with the 
confocal microscope (Fig. 7). They show that in the 
case of sodium hypochlorite samples after 24 hours, 
light whose wavelength is characteristic of red light, 
corresponding with dead microorganisms, is clearly 
visible, especially on the edges of flocs. It is due to the 
fact that chlorine damaged bacteria on the outside of 
the floc and did not significantly reduce the vitality of 
the population inside it. In the case of tests with the 
addition of chlorine after 1 hour, light with green light 
wavelengths is visible, which is why during machine 
learning it is more difficult to indicate whether the 
condition of the activated sludge has already changed. 
The classifier is better at grouping unambiguous 
situations, which correspond with abnormal 
conditions – in this case, adding chlorine and waiting 
24 hours. 

The situation is different in the case of the ASS 
class, where accuracy of classifier accuracy is lower 
than in the case of the AS tests. The experiment based 
on the addition of sodium hypochlorite caused the 
death of microorganisms faster than in the case of tests 
with AS, which confirms greater sensitivity of bacteria 
in supernatant. In this case, due to the fact that the 
classifier could only use a group of dead 
microorganisms, which is characterized by the 
dominance of light whose wavelength is characteristic 
of red light, it was not able to carry out the 
classification process based on only one type of 
fluorescence. Nevertheless, the death of bacteria in the 
supernatant was observed much faster than in 
activated sludge after 24 hours of waiting time. 
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Fig. 7. Percentage accuracy of classification results for predicted group of stained bacteria 

from activated sludge and supernatant 
 

The normal state of sediment flocs, dominated 
by living microorganisms, and it’s extremely 
abnormal state with the dominance of dead 
microorganisms, results in the lowest accuracy of the 
classifier. The results indicate that these anomalies are 
identified more quickly in the supernatant (without 
additives after 24h) than in activated sludge (with 
NaOCl after 24h). 

Machine learning, which in this research used 
the bagging decision trees, can be applied to assess the 
status of activated sludge based on the results of 
analyses carried out with a confocal microscope and 
Live/DEAD staining. The greatest accuracy was 
obtained for an intermediate state, in which the onset 
of the anomaly can be clearly diagnosed. These 
changes in the supernatant were observed faster than 
in activated sludge. This is due to what has been 
established, namely that microorganisms responsible 
for the wastewater treatment process could be 
searched in the supernatant group of very fine flocs in 
the range of 1-10 μm, which constitute about 90% of 
the total sludge particles. This indicates the usefulness 
of the proposed methods for detecting the condition of 
the activated sludge treatment plant and the ability to 
determine the moment at which, for some reason, its 
operational balance is disturbed. 
 
4. Conclusions 
 

The collected results confirmed the validity of 
conducting analyses for the determination of 
microorganisms in the supernatant. This is a step 
forward, although further research on a more suitable 
approach to microbiological analysis of activated 
sludge is needed; using machine learning is still a 
challenge too. The research results indicated that beta-
AOB and Nitrobacter spp. groups occur in both the 

activated sludge and the supernatant. The presence or 
absence of the bacteria, as well as some transformation 
of bacteria (e.g. antibiotic-resistant bacteria) on the 
outflow, could indicate the quality of wastewater 
treatment process, demonstrate the influence of some 
toxic substances on the bacteria population and 
shorten the time of reaction before total nitrification 
collapse. 

The data gathered for the research clearly 
reflect the importance of monitoring smaller size 
particles in the effluent. Taking into consideration that 
the smallest flocs leaching to the outflow constitute a 
group of microorganisms that is most numerous and 
vulnerable to external factors, it is advisable to take 
into consideration the samples of bacteria mostly 
responsible for the quality of the wastewater process 
in the outflow/supernatant. The presented approach 
requires further research in this field at various 
WWTPs struggling with the problem of the instability 
of biological nitrification. 
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