

"Gheorghe Asachi" Technical University of Iasi, Romania

EFFECTIVE REMOVAL OF RHODAMINE B DYE FROM AQUEOUS SOLUTION BY ADSORPTION ON α -AG₂WO₄/SBA-15 NANOMATERIAL

Francisco das Chagas Marques da Silva^{1*}, Lara Kelly Ribeiro da Silva¹, Anne Gabriella Dias Santos², Vinicius Patrício Santos Caldeira², Laécio Santos Cavalcante³, Germano Pereira dos Santos¹, Geraldo Eduardo da Luz Junior^{1,3}

¹Department of Chemistry, Federal University of Piaui, 64049-550, Teresina-PI, Brazil
²Department of Chemistry- FANAT State University of Rio Grande do Norte, Mossoró, RN 59610-210, Brazil
³GERATEC-CCN-DQ, State University of Piaui, João Cabral S/N, 64002-150, Teresina-PI, Brazil

Abstract

Silver tungstate (α -Ag₂WO₄), sieve molecular mesoporous (SBA-15), and α -Ag₂WO₄/SBA-15 x% (x is mass ratio of 5, 10, and 20% of α -Ag₂WO₄ to SBA-15) were synthetized by sonochemical, hydrothermal, and post-synthesis methods, respectively. The materials were characterized by powder X-ray diffractometry (XRD), field emission electron microscopy (SEM), N₂ adsorption/desorption, X-ray photoelectron spectroscopy (XPS), and zeta potential. The characterizations verify that silver tungstate (α -Ag₂WO₄) and nanocomposite α -Ag₂WO₄/SBA-15 x% were obtained. The performance of α -Ag₂WO₄/SBA-15 x% in adsorption of RhB depended on percentage of α -Ag₂WO₄. The RhB adsorption behavior onto adsorbents was well fitted to pseudo-second order kinetics and Langmuir isotherm model. The removal efficiency of α -Ag₂WO₄/SBA-15 20% (1.050 g L⁻¹) was 100% for RhB 50 ppm at 30 min. Moreover, 80% of RhB was recuperated from adsorbents at neutral pH.

Key words: adsorbent, molecular sieve, wastewater treatment

Received: September, 2020; Revised final: February, 2021; Accepted: March, 2021; Published in final edited form: September, 2021

^{. . .}

^{*} Author to whom all correspondence should be addressed: e-mail: fmarquesilva@hotmail.com; Phone: +55 86 8834-7156