Environmental Engineering and Management Journal

May 2022, Vol. 21, No. 5, 769-780 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

ANAEROBIC DEGRADATION OF DYES AZO DIRECT BLUE 71 AND REACTIVE BLACK 5 UNDER DIFFERENT CONDITIONS

Fabricio Motteran^{1*}, Heitor Róger Alves e Dias², Carolina Aparecida Sabatini², Sávia Gavazza¹, Marcia Helena Zamarioli Damianovic²

 ¹Geosciences Technology Center, Department of Civil and Environmental Engineering, Laboratory of Molecular Biology and Environmental Technology, Ave. Arquitetura, s/n, Cidade Universitária. Zipcode50740-550. Recife, PE, Brazil
²Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo. Ave Trabalhador São-Carlense, no. 400, Zipcode 13566-590, São Carlos, SP, Brazil

Abstract

In this study, the degradation of the Direct Blue 71 (DB71) - a trisazo dye and Reactive Black 5 (RB5) - a double azo dye was evaluated under three environmental conditions with respect to the presence of electron acceptors: sulfate, nitrate, and under methanogenic condition, in anaerobic batch reactors with 500 mL reaction volume. The best color removal efficiencies for RB5 dye, with an initial concentration of 52 mg/L was 94% in the presence of sulfate as electron donor. For DB71 dye, the best color removal efficiency was 99% for an initial concentration of 77 mg/L, under the methanogenic condition. The highest average removal speeds for DB71 dye were 0.16 ± 0.02 hours⁻¹ and for RB5 dye was 0.15 ± 0.02 hours⁻¹, observed concurrently with sulfate reduction condition suggests that the highest presence of sulfate in its structure of the dye favored the activity of the sulfate-reducing bacteria. The maximum production of methane was 8.9 µmol/L, observed in reactors with RB5 with sulfate reduction. For reactors with DB71, the accumulated methane production was 6.9 µmol/L, in both sulfate and methanogenic conditions. In this way, the reaction condition containing sulfate in the medium favored the anaerobic biotransformation of direct and reactive azo dyes.

Key words: anaerobic conditions, denitrifying condition, methanogenesis, sulfetogenesis, toxic compounds

Received: May, 2021; Revised final: February, 2022; Accepted: March, 2022; Published in final edited form: May, 2022

^{*} Author to whom all correspondence should be addressed: e-mail: fabricio.motteran@ufpe.br; Phone: +55 (81) 2126-8229