Environmental Engineering and Management Journal

July 2022, Vol. 21, No. 7, 1157-1170 http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu

"Gheorghe Asachi" Technical University of lasi, Romania

SPATIAL CHARACTERISTICS AND IMPROVEMENT OF AIR QUALITY IN WUHAN, CHINA

Xin-Ran Li¹, Yan-Bin Jiang², Yu-Lian Lv², Rong-Gui Hu², Rong-Biao Xiang^{2*}

¹College of Science, Huazhong Agricultural University Shizishan 1, Wuhan 430070, China ²College of Resources and Environment, Huazhong Agricultural University Shizishan 1, Wuhan 430070, China

Abstract

Great efforts have been devoted to the mitigation of air pollution since the implementation of the Action Plan (2013 -2017) for Air Quality Improvement in Wuhan, a provincial city situated in Central China. In this study, trend analysis demonstrated notable decreases in the concentrations of SO₂, NO₂ and PM₁₀ since 2013. Similarly, the PM_{2.5} level showed a linear decline from 2013 to 2017, while CO and O₃ exhibited statistically insignificant annual variations. Nevertheless, NO₂, PM_{2.5}, and PM₁₀ failed to comply with the Grade II limits of China Ambient Air Quality Standard. As for the seasonal pattern, PM_{2.5}, PM₁₀, SO₂, CO, and NO₂ were at the highest level in winter and the lowest level in summer, whereas the O₃ concentration peaked in summer. Except for summer, SO₂ exhibited a bimodal pattern with an early noon peak and an insignificant late evening peak around 23:00. On average, PM_{2.5}, PM₁₀, NO₂, and CO concentrations were higher during night than those of daytime, and declines were observed in afternoon. In general, high O₃ concentration appeared in the suburban outskirts of Wuhan, while other pollutants exhibited higher concentrations in the urban area. Cluster analysis grouped the 21 monitoring sites into three or four clusters of various pollution levels. Grouping results were pollutant-dependent, revealing the existence of pollutant-specific spatial heterogeneity. Each pollutant showed a different response to the wind field, suggesting various sources for individual pollutants.

Key words: air quality, temporospatial distribution, wind dependence, Wuhan

Received: November, 2021; Revised final: May, 2022; Accepted: June, 2022; Published in final edited form: July, 2022

^{*} Author to whom all correspondence should be addressed: e-mail: xiangrb@mail.hzau.edu.cn; Phone: +86-27-87282137