ABSORPTION OF NITRIC OXIDE INTO AQUEOUS SOLUTIONS OF [FeII(EDTA)]$^{2-}$ WITH SODIUM HYPOPHOSPHITE AND REDUCTION KINETICS OF [FeIII(EDTA)]$^{3-}$ BY SODIUM HYPOPHOSPHITE

Jian Peng*, Zhen Yang, Peichao Lian

Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China

Abstract

The absorption of NO into aqueous solutions of [FeII(EDTA)]$^{2-}$ and sodium hypophosphite was carried out in a bubble reactor and sodium hypophosphite was used as a reductant to reduce [FeIII(EDTA)]$^{3-}$ generated by [FeII(EDTA)]$^{2-}$ oxidation. The results show that sodium hypophosphite can effectively reduce the [FeIII(EDTA)]$^{3-}$ and improve the absorption efficiency of NO. The reduction rate of [FeIII(EDTA)]$^{3-}$ increases with the increase in temperature and pH. The stoichiometry and reduction kinetics of [FeIII(EDTA)]$^{3-}$ by sodium hypophosphite was achieved according to the influence of different sodium hypophosphite concentrations, temperature, and pH on the reduction rate. The activation energy of reducing [FeIII(EDTA)]$^{3-}$ by sodium hypophosphite is calculated to be 33.172 kJ/mol. The reduction kinetics of [FeIII(EDTA)]$^{3-}$ by sodium hypophosphite in the air was obtained, and the agreement between the experimental results and simulation results was excellent.

Key words: [FeII(EDTA)]$^{2-}$, kinetics, nitric oxide, reduction, sodium hypophosphite

Received: February, 2022; Revised final: September, 2022; Accepted: September, 2022; Published in final edited form: September, 2022

* Author to whom all correspondence should be addressed: e-mail: jianp2004@163.com, Phone:+86 871 65920245; Fax: +86 871 65920245