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Abstract 
 
The Ganjiang River Basin, situated within the Yangtze River Basin, holds substantial ecological significance. A comprehensive 
understanding of the spatial-temporal variations and underlying drivers of habitat quality in this region is imperative for ensuring 
ecological security and upholding national ecological rights and interests. In this study, we utilized a remote sensing dataset and 
employed the InVEST model to analyze habitat quality distribution across both watershed and sub-watershed scales. Additionally, 
we integrated a land use transfer matrix and Moran's I index to examine the spatial and temporal patterns of habitat quality variation. 
The impact of 12 primary driving factors on habitat quality distribution was assessed using the geo-detector method. Our findings 
indicate the following: (1) Over the past two decades, the overall habitat quality in the Ganjiang River Basin has remained high, 
albeit exhibiting a consistent downward trend. (2) Approximately 60% of the basin area experienced degradation in habitat quality, 
primarily concentrated in the upper reaches characterized by initially favorable ecological conditions. Conversely, approximately 
14% of the area demonstrated improvements in habitat quality, suggestive of the efficacy of select environmental protection 
initiatives. (3) Land use intensity emerged as the predominant factor influencing habitat quality, with inter-factor interactions 
exhibiting greater explanatory power than individual factors. Notably, the interaction between land use intensity and terrain exerted 
the strongest influence, underscoring the disproportionate impact of economic activities in rugged terrain on habitat quality decline. 
Our findings hold significant implications for guiding ecological protection efforts in critical regions and provide a robust scientific 
foundation for ecosystem management and sustainable development initiatives. 
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1. Introduction 
 

Habitat quality (HQ)refers to the ability of the 
ecological environment to provide suitable living 
conditions for the sustainable development of 
individuals and groups. The change of habitat quality 
is the common result of regional location, 
geographical characteristics, climate conditions and 
human activities (Liu et al., 2019). The quality of an 
area's habitat reflects the synthesis of many natural 
and societal elements (Kar and Gupta, 2023; Mortelliti 
et al., 2010; Wu, 2021). The value of HQ indicates the 
ecological carrying capacity and potential production, 

∗ Author to whom all correspondence should be addressed: e-mail: liuchunqing@jxau.edu.cn, jiaxinzheng08@163.com  

which can be applied to gauge the level of regional 
biodiversity (Firmansyah et al., 2023). Improving 
habitat quality is helpful to protect and restore 
biodiversity and ensure regional ecological security 
(Terrado et al., 2019). Investigating the spatial 
distribution and evolutionary mechanism of HQ can 
provide statistics for regional landscape planning, 
landscape pattern optimization, and ecological 
surroundings safety (Li et al., 2021; Zeng et al., 2023). 

The Ganjiang River Basin, situated in the hilly 
and mountainous belt of southern China, is the 
primary tributary of the Yangtze 6River located in the 
key ecological function zone of the Yangtze River (Fu 
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et al., 2023). Abundant in water, soil, forest, and 
wildlife resources, it serves as a vital guarantor for 
China's ecological and economic development (Deng 
et al., 2019; Yang and Wu, 2023). Simultaneously, the 
Ganjiang River Basin lies within the economic growth 
belt of the middle and lower reaches of the Yangtze 
River, significantly influenced by the human-land 
relationship. In recent years, rapid socio-economic 
development (Cao and Xie, 2023; Junwen and Yuxin, 
2023),) has intensified in the Ganjiang River Basin, 
leading to notable land use changes and ecological 
transformations in this region (Liu et al., 2021; 
Miserendino et al., 2011). Therefore, the dynamic 
assessment of HQ and its driving forces assumes 
paramount importance for rational land surface layout 
and ecosystem stability and restoration maintenance 
(Shu et al., 2019). 

Land use serves as the cornerstone for 
biodiversity, and its alteration disrupts the flow of 
material and energy across habitat patches, leading to 
habitat quality degradation and posing threats to 
ecological environments and regional biodiversity 
conservation (Huang et al., 2019; Liccari et al., 2022; 
Wang et al., 2017). Therefore, land-use change 
analysis forms the bedrock of HQ research (Erdogan 
and Salis, 2023). Local governments can implement 
policies for local ecological protection and achieve 
sustainable regional development by analysing the 
ramifications of HQ and land-use change (An et al., 
2021; Betul and Onur, 2023; Gao et al., 2017; Liu et 
al., 2022). 

HQ evaluation techniques encompass two 
approaches. The first is the index system method 
based on landscape patterns (Zlinszky et al., 2015), 
primarily leveraging field research to derive HQ 
metrics and construct comprehensive assessment 
indices (Wei et al., 2022; Zlinszky et al., 2015), 
However, due to constraints in time and manpower, 
field survey sample methods tend to focus solely on 
HQ of specific species or narrow regions, rendering 
long-term research endeavors challenging. The second 
approach evaluates HQ utilizing ecological models 
(Xu et al., 2019; Zhang et al., 2020). The Integrated 
Valuation and Trade-off of Ecosystem Services 
(InVEST) model, Social Value of Ecosystem Services 
(SoLVES), and Species Distribution Models (SDMs) 
are common assessment models. Powerful spatial 
visualization and accurate calculation results are also 
used to evaluate HQ (Irman et al., 2023; Tang et al., 
2015). The InVEST model, renowned for its robust 
spatial visualization and accurate calculation results, 
facilitates HQ evaluation by examining and 
computing several criteria, such as habitat degradation 
extent and ecological sensitivity across different 
habitat types (Fellman et al., 2015; Johnson, 2007; 
Sallustio et al., 2017; Stanford University, 2023). The 
InVEST model finds widespread application in 
assessing HQ in areas of significant ecological value, 
primarily nature reserves (Terrado et al., 2016; Wang 
and Cheng, 2022; Wei et al., 2022), river basins (Berta 
Aneseyee et al., 2020; Bi et al., 2023; Guihua et al., 
2016), and urban centers (Chen et al., 2023; Han et al., 

2019; Nematollahi et al., 2020; Zhu et al., 2020). For 
instance, Liu et al. (2019) examined the spatial and 
temporal changes in HQ in the Yangtze River 
Economic Belt using the InVEST model, GIS spatial 
analysis methods, regression analysis, and 
topographic position index. The authors discovered 
that the research area's mean value of HQ had a 
tendency to decline due to the trend of deterioration. 
Additionally, Berta Aneseyee et al. (2020) conducted 
a qualitative case study of the Winike watershed using 
land-use/cover change information and the InVEST 
model and found that agricultural land encourages the 
diversity of wildlife and birds in the region, thereby 
demonstrating the InVEST model's utility in HQ 
evaluation. 

The Ganjiang River Basin belongs to both the 
Yangtze River economic development belt and the 
Yangtze River Ecological protection area. Since 2000, 
advancements in socio-economic development and 
ecological engineering have intensified land use 
change, rendering it a focal point for urbanization 
development and ecological conflicts. Frequent 
human activities have undermined natural ecosystem 
functions in certain areas, imperiling the living 
environment of numerous plant and animal species. 
However, there remains a dearth of long-term studies 
on habitat quality in this region. Therefore, this study 
focuses on the Ganjiang River Basin, utilizing remote 
sensing data to systematically investigate land use 
changes from 2000 to 2020. At the same time, 
statistical tools and geographic information system 
tools were used to deeply analyze the spatio-temporal 
change pattern of HQ in the past 20 years. As a driving 
factor analysis tool, geodetector has been widely used 
and verified in the field of ecology. Therefore, this 
study selected 12 environmental factors and human 
factors, and introduced geodetector to explore the 
main driving force causing the change of HQ spatial 
distribution. 

This study aims to (1) identify the temporal and 
geographical changes in land use and HQ in Ganjiang 
River Basin between 2000 and 2020, (2) determine the 
spatial heterogeneity of HQ, and (3) analyze the 
relationship between influencing factors and HQ. Our 
findings offer deeper insights into how human 
activity-driven land use changes influence 
biodiversity, provide recommendations for land 
management for development and conservation in the 
Ganjiang River Basin, and furnish theoretical support 
for ecological sustainability. 

 
2. Materials and methods 
 
2.1. Study area 
 

The Ganjiang River is the primary tributary of 
the Yangtze River and the largest river in Jiangxi 
Province. The basin is 766 km long and 83.500 km2 in 
size located at 24°30‘–27 °10’ E and 113°55‘-116 
°35N. It is demarcated into three sections: the upper 
segment, which extends from the river's source to 
Ganzhou, traversing hills and valleys; the middle 
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segment, stretching from Ganzhou to Xingan through 
hilly terrain; and the downstream segment, which 
flows from Xingan to Wu-cheng, coursing through 
hills and connecting to the Yangtze River via Poyang 
Lake (Bi et al., 2023). Recently, Jiangxi Province is 
experiencing fast socioeconomic growth, with major 
increases in urbanization and industrialization. 
Between 2000 and 2020, the collective population of 
prefecture-level cities within the Ganjiang River Basin 
surged from 38.956 to 42.435 million individuals, 
accompanied by a corresponding rise in GDP from 
179.94 to 2.379.52 billion yuan (Lang et al., 2023).  

Over the past few decades, the ecosystem of the 
Ganjiang River Basin has faced mounting pressure 
stemming from industrial pollution, land 
development, and excessive logging (Xu et al., 2020). 
These factors have detrimentally affected the quality 
of the ecosystem, jeopardizing its sustainable 
development, and leading to the degradation of natural 
habitats and loss of biodiversity.  
 
2.2. Data source and processing 

 
Land use data were obtained from the land use 

data set in 2000, 2010 and 2020 of the Center for 
Resources and Environmental Science and Data, 

Chinese Academy of Sciences 
(https://www.resdc.cn/). These data, featuring a 
spatial resolution of 30 meters, were generated 
utilizing a human-computer interaction interpretation 
method. Additionally, a digital elevation model 
(DEM) generating slope and aspect information was 
derived from a geospatial data cloud platform 
(http://www.gscloud.cn). The Normalized vegetation 
index (NDVI) data were provided by the National 
Data Center for Ecological Sciences 
(http://www.nesdc.org.cn/).  

Socio-economic data primarily comprised 
population density data from RESDC 
(http://www.resdc.cn) and GDP per capita data 
sourced from the statistical yearbook. The National 
Geographic Information Directory Service 
(https://www.webmap.cn) provides grid data on road 
and waterway networks. For this study, the fishing net 
creation tool of ArcGIS10.8 was used to create nets 
with a size of 2kmx2km, and 113996 grids were 
generated. The statistical tool for zoning facilitated the 
acquisition of mean or sum values for land use 
intensity, slope, population density, precipitation, and 
temperature within each grid. Finally, geodetector was 
introduced to analyze the driving force of spatial 
differentiation. 

 

 
 

Fig. 1. Study area of the Ganjiang River Basin, (a) Location of the Ganjiang River Basin in China, (b) Location of the Ganjiang 
River Basin in Jiangxi Province, (c) Digital elevation model of the Ganjiang River Basin 
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Fig. 2.  Land use patterns in the Ganjiang River Basin in 2000, 2010, and 2020 
 
2.3. Methodology 
 
2.3.1. Land use transfer 

The Land Use Transfer Matrix model serves to 
comprehensively elucidate the structural 
characteristics of land use type changes across various 
habitats, distinguishing between transfers among 
different categories and quantifying the transfer area 
of each land type during both initial and subsequent 
phases (Dai et al., 2019). This model facilitates 
insights into the evolutionary patterns of different land 
use categories.  The mathematical formulation of the 
transfer matrix model is presented as follows (Eq. 1): 
 

𝑆𝑆𝑖𝑖𝑖𝑖 = �

𝑆𝑆11 𝑆𝑆12 𝑆𝑆1𝑛𝑛
𝑆𝑆21 𝑆𝑆22 𝑆𝑆2𝑛𝑛
… … ⋯
𝑆𝑆𝑛𝑛1 𝑆𝑆𝑛𝑛2 𝑆𝑆𝑛𝑛𝑛𝑛

�                                             (1) 

 
where: n is a kind of land use, and 𝑆𝑆𝑖𝑖𝑖𝑖 is the area of 
type 𝑖𝑖 land that was converted to type 𝑗𝑗 land after the 
research period. Each cell in the matrix represents the 
area that altered from the kind of land use 
corresponding to the row and the land use type over 
the research period corresponding to the column.  

The sum of each row in the transfer matrix 
displays the land-use/cover type's total area at the start 
of the study. Each value within a row of the transfer 
matrix signifies the direction and magnitude of the 
transfer for the corresponding land-use/cover type. 
Furthermore, the sum of each column provides an 
overview of the total area occupied by each land type 
throughout the duration of the investigation, with 
individual values within columns indicating the 
various magnitudes and types of transfers for each 
land type. To complete the data extraction process for 
constructing the transfer matrix, we conducted an 
analysis of land-use status data spanning different time 

periods within the Ganjiang River Basin, processed 
spatial data using ArcGIS, and generated an attribute 
table. 

 
2.3.2. Habitat quality models 

The Habitat Quality (HQ) indicator quantifies 
the extent of fragmentation within habitat patches and 
assesses an area's resilience against potential habitat 
degradation resulting from human activities. Using the 
HQ module of the InVEST model, we derived the HQ 
index and conducted an evaluation of habitat changes 
within the study area (Tang et al., 2015). This model 
primarily accounts for threat sources and ecological 
sensitivity. The HQ of the research region was 
statistically analyzed using remote sensing data 
analysis of land cover types, assess ecological 
sensitivity, and evaluation the proximity and spatial 
influence of each threat source. 

1)Habitat degradation assessment principles 
Habitat degradation refers to the extent to 

which an ecological environment becomes unsuitable 
for human activities or other influences. It can be 
quantified based on the degree of threat and ecological 
suitability, considering land-use types and the 
magnitude of threat factors. When the land-use type is 
𝑗𝑗, the habitat degradation degree 𝐷𝐷𝑥𝑥𝑥𝑥 of grid x can be 
calculated as follows (Eq. 2): 
 
𝐷𝐷𝑥𝑥𝑥𝑥 = ∑𝑟𝑟=1

𝑅𝑅  ∑𝑟𝑟=1
𝑉𝑉𝑉𝑉  (𝑊𝑊𝑟𝑟/∑𝑟𝑟=1

𝑅𝑅  𝑊𝑊𝑟𝑟)𝑟𝑟𝑦𝑦𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝛽𝛽𝑥𝑥𝐾𝐾𝑗𝑗𝑗𝑗              (2) 
 
where: 𝑟𝑟 is the threat factor and 𝑦𝑦 denotes the 
quantities of grids in which 𝑟𝑟 threatens the raster 
graph, 𝑉𝑉𝑉𝑉 is a collection of threat grids in the threat 
grid diagram, and 𝑊𝑊𝑟𝑟 is the threat factor's weight, from 
0 to 1, 𝑟𝑟𝑦𝑦 indicates whether the grid 𝑦𝑦 is a threat grid, 
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 is the threat degree of threat factor value of threat 
grid 𝑦𝑦 to 𝑥𝑥 in the region; 𝛽𝛽𝑥𝑥 is the degree of 
accessibility of grid 𝑥𝑥, from 0 to 1; and 𝐾𝐾𝑗𝑗𝑗𝑗 is the 
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sensitivity of land-use type 𝑗𝑗 as a threat factor 𝑟𝑟 , with 
values between 0 and 1. The following formula was 
adopted to calculate the 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟  value (Eqs. 3-4): 
 
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 = 1 − � 𝑑𝑑𝑥𝑥𝑥𝑥

𝑑𝑑𝑟𝑟max
�  iflinear        (3) 

                                                
 
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 = exp �− � 2.99

𝑑𝑑𝑟𝑟max
� 𝑑𝑑𝑥𝑥𝑥𝑥� ifexponential 

                  (4) 
 

Equations (3-4) are the linear and exponential 
distance decay functions, respectively. Grids 𝑥𝑥 and 𝑦𝑦 
are separated by a linear distance denoted by 𝑑𝑑𝑥𝑥𝑥𝑥, 
while 𝑑𝑑𝑟𝑟max is the threat factor 𝑟𝑟's maximum action 
distance. 

(2)Principles of HQ evaluation 
HQ is a key indicator for measuring ecological 

health and preserving biodiversity, with a rating 
between 0 and 1, with 1 being the most stable 
ecological structure and function(“InVEST | Natural 
Capital Project” n.d.). The manner and intensity of 
land use by humans influenced the quality of the 
habitat, and the more intense the usage, the more 
visible the degradation of the HQ became. The HQ 
index was created using the following formula based 
on the InVEST model's assessment of habitat 
degradation (Eq. 5): 
 
𝑄𝑄𝑥𝑥𝑥𝑥 = 𝐻𝐻𝑗𝑗 �1 − 𝐷𝐷xy𝑧𝑧

𝐷𝐷x𝑗𝑗
2 +𝑘𝑘𝑧𝑧

�                                                    (5) 

 
where: 𝑄𝑄𝑥𝑥𝑥𝑥 is is the habitat quality of raster 𝑥𝑥 in land 
use 𝑗𝑗 , 𝐻𝐻 𝑗𝑗 denotes the habitat attribute of land use 𝑗𝑗, 
and 𝑧𝑧 denotes the normalization index. 

Additionally, the model’s parameter is its 
default value and the half-saturation constant is 𝑘𝑘, the 
value of which is generally half of the maximum value 
of habitat degradation. For example, when the 𝑘𝑘 value 
is 1, the software enters 0.5, which is its default value. 

In this study, habitat danger variables were 
classified into three land-use types, namely cultivated, 
urban building, and barren lands, with the most 
concentrated human activity and a relatively 
substantial direct influence on HQ (Bai et al., 2019). 
Moreover, following the guidelines outlined in the 
InVEST model usage manual, we applied the 
maximum affected range of threat variables (MAX-
DIST) to the model. We determined the threat 
element's weight (0–1), decline index, kind of threat 

factor influence on the habitat, and sensitivity index of 
the habitat to each threat factor (0–1). The parameters 
presented in Table 1 represent the suggested reference 
values provided by the model, while those in Table 2 
encompass the model's recommended reference 
values along with pertinent literature (Bai et al., 2019; 
Gong et al., 2020; Zhang et al., 202). 

 
2.3.3. Analysis of HQ influencing factors and 
mechanisms 
(1) Selection of factors influencing HQ 

Numerous and intricate factors contribute to 
changes in Habitat Quality (HQ), which can be 
broadly categorized as natural and anthropogenic, 
with human disturbances being the primary drivers of 
alterations in the natural environment. Considering the 
existing literature and available data, we identified 12 
natural influencing factors for analysis, encompassing 
precipitation, altitude, slope, aspect, Normalized 
Difference Vegetation Index (NDVI), and proximity 
to the river system. Altitude plays a crucial role in 
shaping vegetation composition and structure, thereby 
indirectly influencing animal habitat preferences (Yu 
et al., 2020). NDVI serves as a metric for assessing 
vegetation growth and coverage (Chen et al., 2023). 
Human influences include population density and land 
use intensity (Xinge et al., 2016). The rapid pace of 
urbanization increasingly disrupts environmental 
processes, with population density serving as an 
indicator of population distribution (Zhu et al., 2020). 
Additionally, areas with higher HQ typically 
experience lower levels of human disturbance, and 
land use intensity serves as a proxy for human 
economic activities. 
(2) Analysis of habitat quality influencing factors 

Geographical phenomena are spatially 
heterogeneous, and geodetector analysis, as a method 
of geographical inquiry, serves to identify and 
elucidate the underlying drivers of these phenomena 
and their changes (Wang and Xu, 2017). Combining 
empirical mode decomposition and multi-scale spatial 
analysis, the geo-detector dissects spatial data into 
various scale components to discern the principal 
factors shaping geographical phenomena. The 
assessment of geodetector results involves quantifying 
the influence level of driving factors, measuring the 
contribution of each scale component to the observed 
geographical phenomena. The results are expressed by 
the q statistic, ranging from 0 to 1, with a higher q-
value indicating a greater explanatory power of the 
independent variable over the dependent variable. 

 
Table 1. Weights for the research area's threat factors 

 

Threat factor Maximum impact 
distance (kilometers) Weight Decay type 

Farmland 8 0.6 linear 
Urban Land 12 1 Exponential 

Rural Resident Land 2.5 0.5 Exponential 
Bare Land 5 0.4 linear 
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Table 2. Sensitivity of different landscape types to threat factors 

 

Habitat type Habitat suitability Farmland Urban land Rural resident 
land 

Bare 
land 

Farmland 0 0 0 0.35 0 
Woodland 1 0.65 0.75 0.85 0.6 
Grassland 1 0.50 0.60 0.35 0.40 

Shrub 1 0.60 0.65 0.35 0.50 
Wetland 1 0.55 0.70 0.70 0.55 
Water 1 0.30 0.50 0.70 0.30 

Construction 0 0 0 0 0 
Bare land 0 0 0 0 0 

 
Table 3. Index system of influencing factors of habitat quality 

 
 First-level indicators Secondary indicators Data source/Description 

HQ 

 
Natural 
factor 

Annual precipitation (X1) China National Meteorological Science Data 
Center (http://data.cma.cn/) 

DEM (X2) Geospatial Data Cloud (http://www.gscloud.cn/) 
Slope (X3) Obtained by DEM calculation 
Aspect (X4) Obtained by DEM calculation 

The distance to the water (X5) Water system vector data analysis 

NDVI(X6) Chinese Academy of Sciences 
(https://www.resdc.cn) 

Human factor 

GDP(X7) Obtained from the statistics yearbook 
Density of village (X8) Obtained from the statistics yearbook 

Population density (X9) Chinese Academy of Sciences 
(https://www.resdc.cn) 

Road density (X10) Analysis of road vector data 
Distance from the county 

(X11) IDW (InverseDistanceWeighted) 

Land use strength (X12) Obtained from the statistical yearbook 
 

In this study, the Habitat Quality (HQ) of the 
Ganjiang River Basin served as the dependent 
variable, while the ecological and social environments 
of the study area acted as independent variables. 
Natural factors encompassed the vegetation index 
(NDVI), terrain, slope, and slope direction, while 
social factors included land use/land cover, per capita 
GDP, number of villages, and night light index. The 
"factor detector" and "interaction detector" 
functionalities of the geodetector were employed to 
scrutinize the impact of individual drivers on the 
spatial heterogeneity of HQ within the Ganjiang River 
Basin and to explore potential interactions between 
these drivers. The calculation formulas utilized are as 
follows (Xinge et al., 2016) (Eqs. 6-8): 
 

𝑞𝑞 = 1 − ∑𝑖𝑖=1
𝐿𝐿  𝑁𝑁𝑖𝑖𝜎𝜎𝑖𝑖

2

𝑁𝑁𝜎𝜎2
= 1 − SSW

SST
                                        (6) 

 
SSW = ∑𝑖𝑖=1𝐿𝐿  𝑁𝑁𝑖𝑖𝜎𝜎𝑖𝑖2                                                             (7) 
 
SST = 𝑁𝑁𝜎𝜎2                                                                             (8) 
 
where: 𝑖𝑖 is the stratification of independent or 
dependent variables, 𝑁𝑁 is the total quantity of units in  
 

the domain, and 𝑁𝑁𝑖𝑖   is the number of units in layer 𝑖𝑖 . 
Additionally, the variance of the factor variable in 
layer 𝑖𝑖 and the entire domain are also indicated by the 
symbols 𝜎𝜎𝑖𝑖2 and 𝜎𝜎2, respectively. Finally, SSW is the 
overall variance of the area, whereas SST is the total 
of the variances of the individual strata. 

Interaction factor detection, in comparison 
with statistical methods, exhibits superior 
geographical detection capabilities. Through 
contrasting the dimensions of a single component q 
and a binary factor q, and by discerning the direction 
and nature of the interaction, we can effectively 
identify interactions between two variables. The 
foundation of these interactions is summarized in 
Table 4. 

 
Table 4. Criteria for interaction 

 
Interaction Criterion 

Weaken 
Weaken, 
nonlinear 

Bi-enhance 
Independent 

Enhance, 
nonlinear 

q(X1∩X2) > Minq(X1), q(X2) 
Min(q(X1), q(X2)) 

<q(X1∩X2)<Max(q(X1), q(X2)) 
q(X1∩X2) > Max(q(X1), q(X2)) 

q(X1∩X2) = q(X1) + q(X2) 
q(X1∩X2) b0 q(X1) + q(X2) 
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3. Results and discussion 
 
3.1. Land use transfer 

 
Between 2000 and 2010, land-use change in 

Ganjiang River Basin was characterized primarily by 
the converting of farmland to construction land, 
alongside increased utilization of grassland, 
construction land, and water. Construction land saw a 
notable surge, expanding by 320.29 km2 (14%), while 
the area of cultivated land decreased by 256.82 km2 
(1.1%). Subsequently, from 2010 to 2020, land-use 
changes in the research area were marked by the 
conversion of farmland, woodland, and grassland into 
construction land.  

The amount of farmland, woodland, and 
grassland experienced substantial declines of 825.24 
km2 (4%), 952.25 km2 (1.8%), and 532.27 km2 (1.2%), 
respectively (Table 5 and Fig. 3). Furthermore, the 
dominant land use types in the upper, middle, and 
lower reaches were primarily farmland and woodland 

(Fig. 4). The maximum area of construction land 
relative to woodland was observed in the upper 
reaches, followed by the middle reaches, whereas the 
forested area was the smallest.  

Conversely, the lower reaches exhibited the 
greatest extent of construction land and the lowest 
forested area. Additionally, there was a notable 
increase in development land in the downstream 
region, while both forested and farmland regions 
experienced a declining trend. 

Between 2000 and 2020, the Ganjiang River 
Basin underwent significant land-use transitions. 
Construction land increased by 18.881.71 km2, 
whereas farmland, woodland, and grassland decreased 
by 991.37 km2 (4%), 981.45 km2 (2%), and 608.40 
km2 (1.4%), respectively. Severe deforestation led to 
inappropriate land use practices, resulting in the 
conversion of several farmland and grassland areas. 
Consequently, the ecosystem services provided by the 
region, such as soil and water conservation and air 
purification, witnessed a decline. 

 
Table 5. Land use transition matrix in the Ganjiang river basin from 2000 to 2020 

 

Period Landscape 
types 

Farmland 
(km2) 

Woodland 
(km2) 

Grassland 
(km2) 

Shrub 
(km2) 

Wetland 
(km2) 

Water 
(km2) 

Construction 
(km2) 

Bare 
land 
(km2) 

2000-
2010 

farmland 23.988.79 22.84 18.03 1.12 4.47 5.21 204.87 0.29 
woodland 33.47 55.214.11 78.46 13.24 0.01 0.87 30.91 0.04 
grassland 17.35 80.99 7.705.02 4.53 0.00 0.37 78.10 0.02 

shrub 1.92 13.22 5.38 45.72 0.00 0.87 0.05 0.00 
wetland 0.54 0.00 0.08 0.00 201.51 0.04 2.68 0.00 
water 8.34 6.41 1.53 1.06 0.00 1.425.24 3.26 0.06 

construction 29.00 3.86 2.12 0.08 0.08 0.89 1.824.38 0.34 
bare land 0.01 0.11 0.02 0.00 0.00 1.71 0.42 149.09 

2010-
2020 

farmland 20.164.77 1.711.49 603.64 1.96 1.22 426.80 1.160.40 8.71 
woodland 1.903.18 50.352.72 2.291.74 18.97 1.69 361.95 362.92 41.74 
grassland 827.03 2.184.05 4.318.20 6.23 1.15 151.41 301.89 18.75 

shrub 3.10 17.14 5.47 37.05 0.00 1.92 1.01 0.00 
wetland 5.97 0.26 0.12 0.00 24.62 169.15 5.51 0.09 
water 97.74 54.17 18.42 0.11 2.94 1.222.57 33.08 6.24 

construction 236.13 34.13 20.75 0.05 0.10 17.56 1.835.00 0.44 
bare land 15.81 28.70 18.10 0.00 0.05 47.13 5.77 34.03 

 

 
 

Fig. 3. The Ganjiang River Basin land use circulation diagram 
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Fig. 4. Proportion of land use types in the subsection of the Ganjiang River Basin in 2000-2020,  

(a) Upstream, (b) Midstream, (c) Downstream 
 

Table 6. Ganjiang River Basin habitat quality changes from 2000 to 2020 
 

Grade Value 
range 

2000 2010 2020 

Area(km2) Percentage 
(%) Area(km2) Percentage 

(%) Area(km2) Percentage 
(%) 

Low 0–0.2 26,238.11 28.76 26,356.05 28.89 27,042.90 29.64 
Relatively low 0.2–0.4 240.15 0.26 294.92 0.32 210.49 0.23 

Medium 0.4–0.6 1,354.24 1.48 1,547.38 1.70 1,745.81 1.91 
Relatively 

high 0.6–0.8 3,934.12 4.31 4,043.24 4.43 5,064.23 5.55 

High 0.8–1.0 59,466.37 65.18 58,991.41 64.66 57,169.62 62.66 
 
3.2. Temporal and spatial changes in HQ in the 
Ganjiang River Basin from 2000 to 2020 

 
In the Ganjiang River Basin, the geographic 

distribution of the changes in HQ was evident (Figs. 
5-6). Between 2000 and 2020, there was a significant 
decline in HQ from the upper to the lower reaches of 
the river throughout the entire basin. 

Furthermore, the high-grade and relatively 
high-grade habitats were widely dispersed. In the 
upper reaches of the Ganjiang River Basin, 
topographical features, elevation, moisture levels, and 
soil conditions constrained habitat alterations.  The 
predominant land-use types, including woodland and 
grassland, remained largely unaffected by human 
activities, resulting in excellent HQ. At the county-
level administrative divisions, the HQ indices of 
Duchang, Yihuang, Yongxiu, Yugan, Jinxian, 
Tonggu, and Nanfeng Counties were relatively high (> 
0.7). Conversely, areas with low and relatively low 
HQ were predominantly located in the lower reaches 
of the Ganjiang River Basin and were widespread 
across the basin, resembling the distribution pattern 
observed in built-up areas. The rapid expansion of 

construction land, posing a significant risk to habitat, 
coupled with the progressive reduction of habitat-
friendly land use categories such as farmland and 
woodland, has led to severe environmental 
degradation, thereby endangering the HQ of the 
Ganjiang River Basin. The regional HQ indices of 
built-up areas, such as Xihu District, Qingshanhu 
District, Zhangshu City, Xinjian County, and Gao'an 
City were relatively low (< 0.3). 

 
3.3. Temporal and spatial changes in habitat 
degradation degree in Ganjiang River Basin 

 
We utilized ArcGIS to examine the temporal 

and geographical differentiation features of habitat 
degradation distribution maps and analyze the HQ in 
the Ganjiang River Basin between 2000 and 2020. 
Habitat degradation within the Ganjiang River Basin 
was classified using the natural breakpoint approach, 
resulting in five levels of degradation: unaltered (0–
0.013), mild (0.013-0.038), moderate (0.038-0.067), 
relatively high (0.067-0.107), and high (> 0.107). 

From 2000 to 2020, the proportion of the 
Ganjiang River Basin exhibiting essentially 
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unchanged HQ increased from 36.85% to 38.84%, 
while the area of highly degraded habitat rose from 
3.09% to 3.58% (refer to Fig. 7). Additionally, areas 
characterized by mild, moderate, and high levels of 
degradation witnessed annual reductions. Thus, an 
unchanged HQ does not necessarily indicate an 
improved HQ. Fig. 8 illustrates that regions with 

unaltered habitat degradation in the middle and lower 
portions of the Ganjiang River Basin predominantly 
corresponded to low HQ zones. Given that these areas 
are primarily comprised of construction lands with 
inherently low HQ, they are incapable of experiencing 
further degradation, thereby explaining the stable 
pattern of habitat degradation depicted in Fig. 8. 

 

 
 

Fig. 5. Spatial pattern and changes of habitat quality in the Ganjiang watershed in 2000-2020 
 

 
 

Fig. 6. Average habitat quality of each section of the Ganjiang River Basin in 2000-2020 
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Fig. 7. Habitat quality degradation changes in the Ganjiang River Basin in 2000-2020 

 
 

Fig. 8. Spatial pattern of habitat degradation in the Ganjiang River Basin in 2000-2020 
 
3.4. Spatial autocorrelation analysis 

 
We used a LISA cluster map to evaluate the 

local spatial correlation patterns of eco-environmental 
quality, aiming to gain a clearer understanding of the 
geographical and temporal distribution of HQ. Fig. 9 
illustrates the HQ Moran's I scatter plot, wherein the 
first and third quadrants encompass the majority of 
scatter points, indicating a high positive spatial 
association of ecological environment quality within 
the research region. The Moran's I indices for the years 
2000, 2010, and 2020 were recorded as 0.719, 0.721, 
and 0.725, respectively, all of which surpassed the 1% 
significance threshold. This suggests that the spatial 
distribution of HQ in the Ganjiang River Basin 
exhibits clustering rather than randomness. 

The GeoDa global spatial autocorrelation 
research found a spatial autocorrelation of HQ within 
the Ganjiang River Basin. Regions depicted in red, 
along with their adjacent areas, exhibit high (high-

high) HQ values on the LISA cluster map. Pink-
colored areas signify high HQ values, surrounded by 
regions with low values (high-low). Similarly, dark 
blue regions and their surrounding areas denote low 
(low-low) HQ indices, whereas light blue areas 
indicate low HQ indices, bordered by regions with 
high (low-high) values. 

The spatial pattern of HQ values in the study 
area reveals clustering of both high and low values 
across the years 2000, 2010, and 2020 (refer to Figure 
10). The upper and middle reaches of the basin 
predominantly exhibit high-high clustering, with 
scattered instances in the lower reaches. Conversely, 
the low-low cluster areas are dispersed throughout the 
middle and upper reaches but are primarily 
concentrated downstream. These regions are 
characterized by dense farmland and high population 
densities associated with poor HQ. Notably, in 2020, 
certain portions of the lower region's HQ witnessed a 
partial transition from poor to high values. 
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3.5. Identification of driving factors for spatial 
heterogeneity of HQ in Ganjiang River Basin 
 

(1) Single factor attribution of spatial 
heterogeneity of HQ 

The q-statistics, indicative of each factor's 
explanatory power, were ranked as follows: land use 
intensity (X12), DEM (X2), precipitation (X1), village 
density (X11), road density (X9), NDVI (X6), slope 
(X3), population density (X8), river distance (X5), 
distance to county seat (X7), GDP (X10), and slope 
aspect (X4).  With the exception of aspect (X4), which 
met the 0.05 threshold for significance in the upstream 
region, the explanatory power of the remaining 
components passed the 0.01 significance level.  
Furthermore, factors were prioritized based on their q-
statistics as follows: X12 > X2 > X1 > X11 > road X9 
> X6 > X 3> X 8> X 5> X 7> X10 > X4. 

In the midstream area, each factor's 
explanatory power also passed the 0.01 significance 
level test, and their rankings based on q-statistics were 
as follows: X12 > X2 > X11 > X6 = X3 >  X9 > X8 > 
X5 > X4 > X7 > X10. 

In the downstream area, each factor's 
explanatory power passed the 0.01 significance level 
test lastly.  The criteria were ordered according to their 
q-statistics as follows: X12>  X2 > X3 > X1 > X6 > 
X11 > X10 > X8 > X5 > X9 > X4 > X7. 

(2) Single factor attribution of spatial 
heterogeneity of HQ 

In comparison with single-factor interaction, 
the interactions between each influencing variable and 
the other components were strengthened to varying 
degrees (refer to Fig. 11). From a view of the entire 
basin (Fig. 11a), the geographical pattern of HQ in the 
Ganjiang River Basin was best elucidated by the 
interplay between land use and other variables. 
Notably, land use intensity ∩ slope (0.884), land use 
intensity ∩ NDVI (0.883), and land use intensity ∩ 
DEM (0.884) provided a more comprehensive 
explanation for spatial heterogeneity in habitat quality. 

This indicates that, under the same land use type, 
disparities in slope, NDVI, and elevation exert a more  
 
significant  impact  on the  spatial  pattern of HQ and  
yield. Moreover, it was evident that DEM and road 
density interact with village density, NDVI, and other 
variables, potentially influencing alterations in land 
use type and HQ. The interaction of village density 
with NDVI and slope exhibited notably greater 
strength in explaining regional heterogeneity in HQ 
compared to individual effects, underscoring the 
indispensable contributions of both factors to spatial 
heterogeneity in HQ. 

In the sub-regions of the Ganjiang River Basin, 
aside from the dominant interaction between land use 
and DEM, the explanatory power of the other factors 
exhibited varying degrees of enhancement. The 
relationship between village density, GDP, and other 
factors was better explicated in the upstream region 
(Fig. 11a) than in other regions, signifying the 
substantial influence of human economic activities on 
HQ in the up-stream region. Conversely, the 
interaction between village density, NDVI, and other 
factors was more pronounced in the mid-stream region 
(Fig. 11b) than in other regions, suggesting the 
combined impact of human and natural factors on HQ 
in this area. Notably, the strength of the interaction 
between slope, precipitation, and other components 
increased noticeably compared to other regions, while 
the interaction between land use, DEM, and various 
parameters peaked in the downstream zone (Fig. 11c). 

These observations align with the regional 
development status at the time of the study.  Village 
density serves as an indicator of urbanization, and 
increasing GDP drives new land-use demands. 
Consequently, greater strain is imposed on adjacent 
natural environments when development land 
encroaches on other land use categories.  Therefore, 
optimizing urban spatial patterns is imperative for 
enhancing local HQ and promoting the 
implementation of ecological restoration projects. 
 

 

 
 

Fig. 9. Moran's I habitat quality scatter plot 
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Fig. 10. Habitat quality of the LISA clustering diagram in the Ganjiang River Basin 
 

Table 7. Impact of driving factors on spatial heterogeneity of habitat quality 
 

Factor Watershed Upstream Midlestream Downstream 
q p q p q p q p 

X1 0.066 0.000 0.072 0.000 0.090 0.000 0.182 0.000 
X2 0.250 0.000 0.167 0.000 0.227 0.000 0.274 0.000 
X3 0.160 0.000 0.051 0.000 0.090 0.000 0.189 0.000 
X4 0.020 0.000 0.004 0.011 0.010 0.000 0.049 0.000 
X5 0.019 0.000 0.022 0.000 0.018 0.000 0.060 0.000 
X6 0.134 0.000 0.054 0.000 0.092 0.000 0.144 0.000 
X7 0.034 0.000 0.013 0.000 0.009 0.000 0.031 0.000 
X8 0.092 0.000 0.045 0.000 0.061 0.000 0.082 0.000 
X9 0.097 0.000 0.065 0.000 0.077 0.000 0.058 0.000 
X10 0.080 0.000 0.012 0.000 0.001 0.820 0.113 0.000 
X11 0.137 0.000 0.069 0.000 0.098 0.000 0.127 0.000 
X12 0.882 0.000 0.839 0.000 0.894 0.000 0.910 0.000 

X1, precipitation; X2, DEM; X3, slope; X4, slope aspect; X5, water distance; X6, NDVI; X7, distance to the county seat; X8, population density; 
X9, road density; X10, GDP; X11, village density; X12, land-use intensity. 

 

 
 

Fig. 11. Habitat quality drive factor interaction detection results, (a) Upstream, (b) midstream, (c) downstream, (d) watershed 
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3.5. Discussion 
 

As a significant component of the Yangtze 
River's primary ecological functioning region in 
China, it is imperative for the government to address 
the key ecological security issues within the Ganjiang 
River Basin and implement corresponding preventive 
and policy measures to safeguard and restore 
ecological functions. Between 2000 and 2020, the 
Ganjiang River Basin witnessed rapid urbanization, 
with the overall population increasing from 
38.956.000 to 42.435.000, and the GDP of prefecture-
level cities rising from 179.94 to 237.952 billion 
Yuan, indicative of substantial economic growth. 
However, these economic development and 
infrastructure construction have led to significant 
impacts on land use patterns due to various 
unscientific resource utilization methods and 
excessive development practices, resulting in soil 
erosion, drastic declines in biodiversity, and other 
ecological challenges, ultimately diminishing habitat 
quality within the Ganjiang River Basin. 

Natural forces have contributed significantly to 
the variation in HQ. The upper portions of the 
Ganjiang River Basin, situated in hilly errains, 
experience limited human interference and 
development impacts on account of topographical 
constraints. This observation aligns with prior 
research that has established a correlation between 
topography, land use, and HQ within the Ganjiang 
River Basin (Liu et al., 2021; Xu et al., 2020). High-
quality habitats are predominantly found in 
mountainous and hilly regions characterized by dense 
forest cover and abundant water bodies, whereas low-
grade habitats are primarily situated in flat, low-
altitude areas with extensive construction land. Over 
time, the influence of topographic features on HQ 
remains consistent, emphasizing the importance of 
reducing land-use intensity to enhance HQ in the 
Ganjiang River Basin. 

However, the medium-and long-term time 
series study provided robust evidence for the changes 
in habitat quality. Sixty percent of the areas 
experiencing habitat quality deterioration were 
initially situated in mountainous and hilly areas with 
high-quality habitats. Despite the abundance of forests 
and shrubs in these areas, factors such as thin soil 
layers, poor fertility, frequent heavy rainfall, and 
severe surface water erosion render them highly 
vulnerable to the impacts of human economic 
activities.  Therefore, this study indicates that the 
degradation of habitat quality becomes more 
pronounced in areas initially characterized by better 
habitat quality. 

Based on the findings of this investigation, the 
following policy recommendations are proposed: 
Firstly, regions with high-value HQ in the upper 
reaches of the Ganjiang River Basin should receive 
enhanced ecological protection, with high-value HQ 
areas potentially designated as ecological protection 
red lines to safeguard their ecological security. 

Conversely, areas downstream with low-value HQ 
should undergo strict monitoring of urbanization and 
land use intensity, avoiding disorderly development of 
built-up land and considering redevelopment of 
underutilized properties to enhance land-use 
efficiency. Moreover, efforts should be directed 
towards optimizing economic layout, promoting green 
development, and strengthening the linkage between 
economic construction and ecological protection to 
enhance HQ. Secondly, given the propensity for urban 
expansion to disrupt the environment in the Ganjiang 
River Basin, economic development plans must adopt 
a dynamic perspective, incorporating a sustainable 
development model capable of adapting to ecological 
changes and spatial dynamics within urban and rural 
areas. Thirdly, to enhance the ecological, habitational, 
and agricultural conditions of the Ganjiang River 
Basin, spatial structures should be further refined 
based on the principle of human-land cooperation. 
Rational landscape pattern configurations, in 
accordance with ecological protection schemes, 
should be implemented to elevate the overall HQ of 
the watershed. 

This study is not without limitations. Certain 
parameters of the InVEST model, such as the 
sensitivity of land-use types to stress variables, were 
adjusted according to the model user handbook, 
potentially concealing inaccuracies in the analytical 
outcomes. Future research endeavors should prioritize 
the acquisition and utilization of measured data to 
bolster the accuracy of the results. 
 
4. Conclusions 
 

In this study, we used a geodetector to evaluate 
the influences of natural and socioeconomic variables 
on the spatial heterogeneity of HQ in the Ganjiang 
River Basin from 2000 to 2020, utilizing the InVEST 
model and ArcGIS. 

The results of this research are as follows: 
(1) Woodland and farmland constituted the 

primary land-use types in the Ganjiang River Basin. 
Over the study period (2000-2020), notable land-use 
changes included an increase in construction land and 
reductions in farmland, woodland, and grassland. 
Urbanization drove the conversion of farmland and 
woodland into construction land, while transitions 
between grassland and woodland were also observed. 

(2) Despite the overall high HQ in the Ganjiang 
River Basin, there was a discernible downward trend 
over time, with the average habitat quality decreasing 
from 0.7104 to 0.7000. However, habitats categorized 
as low, relatively low, and medium exhibited an 
upward trajectory.  

Geographically, areas with higher HQ indices 
were predominantly located in the upper reaches of the 
basin, characterized by woodland, grassland, and 
farmland as dominant land-use types. These regions 
typically featured hilly terrain, limited human 
development, and minimal anthropogenic impact, 
contributing to their high HQ. 
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(3) The principal factors influencing the HQ 

index in the Ganjiang River Basin encompassed land-
use intensity, DEM, NDVI, slope, village density, 
resident density, and per capita GDP. Notably, land 
use intensity and DEM emerged as pivotal 
contributors. Each factor exhibited varying effects on 
HQ gradients. 

This study quantitatively illustrates declining 
trends in habitat quality within a crucial ecological 
region of China through sophisticated spatiotemporal 
analysis methods. The findings underscore the 
environmental challenges posed by economic 
expansion and urbanization in the Ganjiang River 
Basin. Addressing these challenges necessitates a 
balanced approach by policymakers, balancing natural 
resource conservation with socioeconomic 
development. The insights provided by this research 
serve as a valuable analytical foundation for informed 
decision-making. Future research endeavors should 
prioritize enhancing model accuracy, mapping 
ecological networks, and exploring nature-based 
solutions. 
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