
 
 
 
 
 
Environmental Engineering and Management Journal                                                               June 2024, Vol. 23, No. 6, 1247-1257 

http://www.eemj.icpm.tuiasi.ro/; http://www.eemj.eu 
http://doi.org/10.30638/eemj.2024.101 

 

 

 
 
 
 
 

“Gheorghe Asachi” Technical University of Iasi, Romania 
 

 

 

 

A COMPARATIVE STUDY OF THE SEBAL ALGORITHM 
AND SWAP MODEL FOR EVAPOTRANSPIRATION 
RATE ESTIMATION IN QAZVIN PROVINCE, IRAN 

 
Mahsa Hojabri, Majid Vazifedoust, Afshin Ashrafzadeh∗ 

 
Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran 

 
 
Abstract 
 
Given the significance of remote sensing for evapotranspiration (ET) estimation on a regional scale, this research seeks to assess 
actual ET (ETa) data derived from the Surface Energy Balance Algorithm for Land (SEBAL) algorithm, employing ground-based 
data as a reference point. The study focused on two corn fields in Qazvin province of Iran, where the Soil Water Atmosphere Plant 
(SWAP) model underwent calibration using observed soil water content data. The performance of SWAP in estimating soil water 
content was acceptable, with error measures indicating a normalized Root Mean Square Error (nRMSE) of 14.4% for the 0-15 cm 
soil layer and 12.6% for the 15-30 cm soil layer. ETa estimates extracted from the calibrated SWAP were considered as the 
benchmark. Comparing SEBAL's ETa estimates with those from SWAP reveals a linear relationship (R2 = 0.67), and the error 
associated with SEBAL estimates is interpreted as low, with an RMSE of 2.3 mm/d. However, SEBAL consistently tends to 
underestimate ETa values. This study demonstrates that ETa data obtained through remote sensing, characterized by superior spatial 
and temporal resolution compared to ground-based data, can be reliably utilized in the irrigation planning of agricultural fields 
within the study area. 
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1. Introduction 
 

Evapotranspiration (ET) estimation is essential 
in various fields, including agriculture, hydrology, and 
environmental science, as it directly impacts water 
availability (Ghiat et al., 2021). The quantification of 
ET poses a significant research challenge in hydrology 
due to substantial spatio-temporal variability 
(especially in arid and semi-arid regions) and 
challenges related to data acquisition (Gebremedhin et 
al., 2022). Recent studies, such as Wu et al. (2020) and 
Giles-Hansen and Wei (2021), highlight that regional-
scale ET estimation involves integrating multi-source 
satellite data and dynamic models. This approach 
provides a comprehensive view of ET across diverse 
landscapes, aiding water resource management and 
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ecosystem understanding. Prior to the utilization of 
satellite data, estimating ET rates was limited to 
discrete locations with meteorological data. However, 
with advancements in technology, particularly remote 
sensing, contemporary methods enable the derivation 
of regional ET estimates (Li et al., 2009; Monteiro dos 
Reis et al., 2022). 

Regional estimates of evaporation rates from 
water bodies and ET rates can help improve water 
resources management in watersheds and agricultural 
fields (Wanniarachchi and Sarukkalige, 2022). 
Remote sensing-based ET monitoring can also 
provide farmers with helpful information to improve 
irrigation scheduling. Continuous monitoring of ET 
through remote sensing equips farmers with real-time 
information about crop water requirements, 
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facilitating precision irrigation practices tailored to 
specific environmental conditions and crop needs. 
This crucial information enhances the efficiency of 
water resource management in agriculture (Foster et 
al., 2020). Over the past twenty years, there has been 
the emergence of algorithms, including Surface 
Energy Balance Algorithm for Land (SEBAL) 
(Bastiaanssen et al., 1998a; 1998b), Surface Energy 
Balance System (SEBS) (Su, 2002), Mapping ET at 
high Resolution using Internalized Calibration 
(METRIC) (Allen et al., 2005), Two-Source Energy 
Budget (TSEB) (Norman et al., 1995), and 
Atmosphere-Land EXchange Inverse (ALEXI) 
(Anderson et al., 1997), which leverage satellite data 
and the surface energy balance equation to estimate 
regional ET rates. 

Among various algorithms for estimating 
evapotranspiration, SEBAL stands out for its 
widespread application and consistent assessment in 
diverse geographical regions (Ma et al., 2023). 
However, even though SEBAL has a potent 
theoretical framework, its complexity, and many 
parameters are considered its main drawbacks (Zhou 
et al., 2014). Previous studies collectively suggest that, 
depending on climatic and meteorological conditions 
and considering the properties of land cover types, the 
accuracy of SEBAL in estimating ET rates ranges 
from 67% to 97% (Paul et al., 2013). So, before using 
SEBAL in a specific study area, it could be helpful to 
evaluate its performance and assess the accuracy of 
estimates provided by the algorithm. Ground truth 
data of ET rates have been utilized as benchmarks to 
evaluate the performance of algorithms that derive ET 
products from satellite data. These data can be 
acquired from various instruments, including 
weighing lysimeters, Eddy Covariance (EC) systems, 
and Large Aperture Scintillometers (LASs), which 
range in complexity. Paul et al. (2013), using observed 
data from four large weighing lysimeters located in 
cotton fields, assessed the SEBAL algorithm. They 
found an overall bias of 28.2% between satellite-based 
and observed ET rates. Zhou et al. (2014) reported 
that, on average, SEBAL estimates of ET rates are 4% 
higher than the estimates obtained from the eddy 
covariance system they used in their study. Obtaining 
sufficient and accurate ground-based data for 
validating satellite-based estimates of ET rates is often 
challenging, and using instruments such as eddy 
covariance systems or scintillometers can require 
significant effort. As a result, some researchers turn to 
alternative data sources, such as pan evaporation data 
(e.g., Sun et al., 2011) or actual ET (ETa) rates derived 
from field-scale moisture flow models (e.g., 
Minacapilli et al., 2009), to validate these estimates. 

This study aims to validate ET rates derived 
from the SEBAL algorithm using field-measured data 
from two corn fields in northern Iran. To achieve this, 
the Soil-Water-Atmosphere-Plant (SWAP) model has 
been implemented and calibrated based on soil water 
content measurements. The calibrated model's ETa 
estimates are then compared with those produced by 
the SEBAL algorithm. By conducting this 

comparison, the study assesses the accuracy of 
SEBAL's remote sensing-based estimates, specifically 
in the corn fields under investigation. This approach 
contributes to validating satellite-based ET estimates 
and enhances their reliability for applications in water 
resource management. 

SWAP's effectiveness is evident in its 
outperformance during wet conditions, as highlighted 
by Kim et al. (2015). The model's ability to provide 
accurate soil moisture estimates underlines its 
strength, particularly in scenarios where other models 
may falter. Gandolfi et al. (2006) explored 
comparisons between different water flow models. 
These studies shed light on the strengths and 
limitations of various models, contributing to the 
ongoing discussion on selecting the most suitable 
model for specific conditions. 

In-depth analyses, including Strengths, 
Weaknesses, Opportunities, and Threats (SWOT) 
assessments, have been conducted to evaluate one- 
and multi-dimensional soil water flow models based 
on the Richards equation, as presented by van Dam et 
al. (2004). These assessments comprehensively 
understand these models' conceptual and 
mathematical underpinnings. In summary, the 
continuous exploration and refinement of soil water 
flow models, exemplified by SWAP, contribute to 
advancing our understanding of soil-water dynamics, 
providing valuable tools for hydrological research. 
Despite its strengths, the model faces challenges in 
handling seasonal variations, spatial limitations, and 
complex calibration processes, particularly under 
deficit irrigation conditions. Understanding these 
aspects is crucial for the informed interpretation and 
application of the SWAP model outputs in agriculture 
and water resource management. 

The present study addresses the growing need 
for accurate ETa estimation using satellite data, 
emphasizing its applicability in monitoring large-scale 
industrial farms and optimizing water resource 
management practices in agriculture. However, 
despite the indispensability and utility of satellite-
based data, their accuracy needs validation through 
ground-based and precise measurements. In this study, 
the ETa extracted from the calibrated SWAP model 
served as a benchmark to assess the data provided by 
SEBAL. Once the satellite data is rigorously assessed 
and confirmed, it can be effectively utilized, 
leveraging its high spatial and temporal resolution 
advantages. 
 
2. Materials and method 
 
2.1. Study area 
 

The present study was conducted at the Hezar-
Jolfa Agro-Industrial Complex in the northern Iranian 
province of Qazvin. Covering a total land area of 
15,567 km2, mainly dedicated to agriculture, the 
Qazvin province is a leading agricultural production 
zone in Iran (Faraji et al., 2017). According to the 
Köppen-Geiger climate classification system (Kottek 
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et al., 2006), the climate of Qazvin Province is cold 
semi-arid (steppe) or BSk (B; arid; S: steppe; k: cold). 
The Hezar-Jolfa Complex encompasses an area of 860 
ha and contains agricultural fields of different sizes, 
mainly cultivated for wheat, barley, sugar beet, and 
corn. Two separate corn fields (namely CP2 and CP5) 
- 38.9 ha and 45.6 ha, both irrigated by a center pivot 
sprinkler irrigation system — were chosen for the 
present study. During the summer cropping season of 
2012 (from June 25 to October 15), a study by Fallah 
(2014) involved dividing the central portion of each 
field into four equally sized square subsections. 
Within these subsections, soil water content 
measurements were taken at four randomly selected 
locations. The measurements were conducted at two 
depths (0-15 cm and 15-30 cm). Fig. 1 illustrates the 
study area's location in Iran, an aerial photograph of 
the two fields being examined, and the positions of the 
measuring subsections within each field.  
 
2.2. The SWAP Model 
 

The SWAP model is based on the physical 
relationship among Soil, Water, Atmosphere, and 
Plant and simulates plant growth and the processes of 
flow, solute, and heat transport in soil. SWAP can 
estimate the temporal and spatial variations of soil 
moisture and ET, which are the main components of 
the soil water balance equation. The SWAP model is 
frequently used worldwide for assessing irrigation 
scenarios, simulating and managing saline soils, 
estimating water table variations, forecasting plant 
production, and estimating variables such as soil water 
content (Badiehneshin et al., 2015; Bennett et al., 
2013; Hassanli et al., 2016; Kumar et al., 2015; Ma et 
al., 2015;Noory et al., 2011; ; ). SWAP employs 
numerical solutions to the one-dimensional Richards 
equation to simulate the water movement in 
unsaturated soils. This equation combines the mass 
balance and Darcy equations for unsaturated soils. The 
representation of the Richards equation is as follows 
(Eq. 1): 
 

( )( 1) ( )a
h hC(h) K h S h
t z z

∂ ∂ ∂ = + − ∂ ∂ ∂ 
 (1) 

where: C(h) is the slope of the soil-water retention 
curve (1/cm); h is the matric potential; t is the time 
elapsed (d); z is the elevation above the datum (cm); 
K(h) is the unsaturated hydraulic conductivity (cm/d); 
and Sa(h) represents the root uptake (cm3/cm3.d). The 
SWAP model utilizes the functions introduced by Van 
Genuchten (1980) and Mualem (1976) to characterize 
unsaturated soil water content and hydraulic 
conductivity (Eqs. 2-3): 
 

( 1)/
( )

(1 )
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h

h −

θ − θ
θ = θ +

+ α
 (2) 

21/2 / ( 1) ( 1)/( ) 1 (1 )n n n n
s e eK K S S − − θ = − −   (3) 

 
where: θr, θs, and θ(h) are, respectively, the residual, 
saturated, and actual soil water contents (cm3/cm3); 𝛼𝛼 
(1/cm) and n (dimensionless) are shape parameters; 
K(θ) and Ks are, respectively, the unsaturated and 
saturated hydraulic conductivities (cm/d); and 
Se=( θh− θr)/( θs− θr). The soil hydraulic parameters in 
the SWAP model (θr, θs, Ks, 𝛼𝛼, and n) can be 
calibrated using the Parameter ESTimation (PEST) 
model. PEST, a widely used parameter estimation 
package, facilitates the calibration of hydrological 
models by employing various optimization algorithms 
(Li et al., 2017). For the current study, soil water 
content data from field measurements were employed 
to calibrate the above parameters. To accomplish this, 
the following objective function was minimized (Eq. 
4): 
 

[ ]2

1
( , ) ( , ) ( , , )

N

i obs i sim i
i

b W z t z t
=

ϕ θ = θ − θ∑ b  (4) 

 
where: b is the vector of parameters; θobs(z,ti) is the 
measured water content at the depth z and the time ti; 
θsim(z, ti, b) is the corresponding simulated water 
content; N is the number of observations; and Wi is the 
weight coefficient of the ith observation. Finding a 
unique vector of parameters that minimizes the goal 
function is desired. 

 
 

Fig. 1. Map of Iran and location of the study area (a); aerial photo of the fields under study and the location  
of measuring subsections (b) 
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The SWAP model comprises four input files: 
the primary input file, a meteorological data file, a file 
containing information about cultivated plants, and a 
file containing irrigation data. Daily weather 
information has been obtained from the nearest 
meteorological station to the region, specifically the 
Qazvin City synoptic station. This dataset includes 
daily records of minimum and maximum air 
temperatures, relative humidity, sunshine hours, and 
precipitation depths, covering the period from June 25, 
2012, to October 15, 2012, representing the region's 
growing season. 

Various crucial soil physical properties for the 
SWAP model include soil texture, soil organic matter, 
percentage of soil particles, and soil apparent particle 
density. On the eight square subsections within the 
CP2 and CP5 fields (Fig. 1), soil texture was 
determined through on-field measurements, the 
percentage of soil particles via the hydrometer 
method, apparent particle density using a core 
sampler, and the percentage of organic matter through 
an examination of previous studies in the Hezar-Jolfa 
Agro-Industrial Complex. 

Irrigation data includes managerial parameters 
such as irrigation method, irrigation depth, irrigation 
frequency, and water quality. The CP2 and CP5 fields 
are irrigated using center-pivot irrigation systems. The 
data required for the irrigation section were derived 
from the rotation speed of the clockwise irrigation 
system and irrigation hours. During field sampling, it 
was observed that mechanized irrigation systems did 
not operate by the designated rotation and depth. 
Consequently, manual calibration of the irrigation 
calendar and depths was performed in the model's 
input. 

Essential soil data for the model includes soil 
layering and hydraulic parameters of the Van 
Genuchten-Mualem functions. It is essential to 
highlight that the calibration of soil hydraulic 
parameters was executed using the PEST parameter 
estimation model. Iteratively, PEST minimizes the 
difference between observed and calculated data, 
resulting in error reduction and model calibration. For 
the calibration of soil hydraulic parameters, the 
inverse modeling was employed using PEST, which 
was integrated into the SWAP model. Parameter 
calibration was conducted for all square subsections 
(Fig. 1), defining an objective function to minimize 
the difference between observed water contents and 
simulated values by the SWAP model. 

SWAP utilizes the Penman-Monteith equation 
to estimate potential ET, incorporating meteorological 
variables recorded at the Qazvin city synoptic station. 
ETa is then computed, considering soil water 
availability, crop resistance, and meteorological 
conditions. Throughout the calibration process, these 
parameters were fine-tuned to more accurately reflect 
the measured water content data obtained from the 
CP2 and CP5 fields. Ultimately, the ETa data served 
as  a   benchmark   for    evaluating    the    estimations  

 

provided by the SEBAL algorithm in the region. 
The measured water content data spanned 18 

days of the growing season in the region, from June 
25, 2012, to October 15, 2012. As mentioned earlier, 
samples were extracted from depths of 0-15, and 15-
30 cm at four randomly selected points within each 
square subsection depicted in Fig. 1. Soil water 
content measurement was conducted through soil 
sampling using the weight method, a common and 
practical technique employed in agriculture. 
Throughout an 18-day sampling period spanning the 
growing season, 144 (18 days × 4 squared subsections 
samples × 2 depths) were collected, and the water 
content of each sample was measured.  
 
2.3. The SEBAL Algorithm 
 

SEBAL stands as the extensively utilized 
algorithm for estimating regional ET through the 
utilization of remotely sensed data. By employing 
satellite-based data and the surface energy budget 
equation, SEBAL calculates the available energy flux 
at the surface, enabling the estimation of ET. The 
energy budget equation can be expressed in the 
following manner (Eq. 5): 
 
LE = Rn – G – H (5) 
 
where: LE is the latent heat flux (W/m2); Rn is the net 
radiation flux at the surface (W/m2); G is the soil heat 
flux (W/m2); and H is the sensible heat flux to the air 
(W/m2). By utilizing the latent evaporation heat, the 
latent heat flux (LE) can be converted into the rate of 
ET.  

The calculation of the net radiation flux at the 
surface (Rn) involves considering several factors, 
including the incoming shortwave radiation (RS), the 
surface albedo (𝛼𝛼), the incoming longwave radiation 
(RL), the outgoing longwave radiation (RL, the sum 
of surface emitted and reflected atmospheric thermal 
radiation), and the surface thermal emissivity (𝜀𝜀0) (Eq. 
6): 
 
Rn = (1 – 𝛼𝛼)RS + RL – RL + (1 – 𝜀𝜀0)RL (6) 
 
where: RS, RL,, RL are in W/m2, and 𝛼𝛼 and 𝜀𝜀0 are 
dimensionless. The soil heat flux (G) can be estimated 
empirically by considering the surface temperature, 
the surface albedo (𝛼𝛼), and the Normalized 
Differential Vegetation Index (NDVI) as influencing 
factors.  

The sensible heat flux can be computed using 
the physical characteristics of air, the aerodynamic 
resistance against heat transfer, and surface-to-air 
temperature difference. Details of the SEBAL 
algorithm can be found in Bastiaanssen et al. (1998b). 
The present study used the MATrix LABoratory 
(MATLAB) software and the Moderate Resolution 
Imaging Spectroradiometer (MODIS) products to 
implement the SEBAL algorithm in the study area. 
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2.4. Error measurements 
 

The evaluation of the SWAP model's 
performance in simulating water content and the 
SEBAL algorithm's accuracy in estimating ET was 
conducted by assessing various metrics, including 
Root Mean Square Error (RMSE), coefficient of 
determination (R2), Mean Absolute Error (MAE), and 
Coefficient of Residual Mass (CRM). The CRM 
metric indicates the model's inclination to 
overestimate or underestimate the measured values. A 
positive CRM suggests a tendency to overestimate, 
with a higher positive value indicating greater 
overestimation. Conversely, a negative CRM indicates 
an inclination to underestimate, and a more negative 
value reflects a higher degree of underestimation. 
RMSE, R2, MAE, and CRM are defined as follows, 
respectively (Eqs. 7-10): 
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where: N is the number of observations and M  and 
S  are, respectively, the mean of Mi (measured values) 
and Si (simulated values). In the assessment of SWAP, 
Mi, and Si are, respectively, the ith measured and 
simulated water contents; and in evaluating the 
performance of SEBAL, Mi is the ET simulated by the 
SWAP model, and Si is the ET estimated by the 
SEBAL algorithm; The normalized RMSE (nRMSE), 
which is the ratio of RMSE to the mean of Mi values, 
was also calculated. 
 
3. Results and discussion 
 

The SWAP model was calibrated using the 
measured soil water content data at the CP2 field (see 
Fig. 1), and the optimal values for the soil hydraulic 
parameters were determined. Table 1 presents the 
optimal values of the parameters (θr, θs, Ks, 𝛼𝛼, and n). 
The performance of the SWAP model, calibrated with 
these values, was evaluated for estimating soil water 
content in the two studied fields using metrics such as 
RMSE, R2, MAE, CRM, and nRMSE. Fig. 2 
represents the mentioned error measure for both fields 
(CP2 and CP5) and in both soil layers. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

 
Fig. 2. Performance measures of the SWAP model in estimating soil water content for both fields 

under study (CP2 and CP5): (a) RMSE, (b) R2, (c) MAE, (d) CRM, (e) n RMSE 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0-15 15-30

RM
SE

 (c
m

3 /c
m

3 )

Depth (cm)

CP2 CP5

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0-15 15-30

R2

Depth (cm)

CP2 CP5

0.000

0.005

0.010

0.015

0.020

0.025

0-15 15-30

M
AE

 (c
m

3 /c
m

3 )

Depth (cm)

CP2 CP5

-0.04
-0.03
-0.02
-0.01
0.00
0.01
0.02
0.03
0.04
0.05

0-15 15-30

CR
M

Depth (cm)

CP2 CP5

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0-15 15-30

nR
M

SE
 (%

)

Depth (cm)

CP2 CP5

 1251 



 
Hojabri et al./Environmental Engineering and Management Journal 23 (2024), 6, 1247-1257 

 
Table 1. The optimum values of soil hydraulic parameters 

 
Soil depth (cm) θr (cm3/cm3) θs (cm3/cm3) Ks (cm/d) α (1/cm) n (dimensionless) 

0-15 0.060 0.470 53.9 0.0098 1.49 
15-30 0.095 0.450 12.3 0.0128 1.42 

 
As Fig. 2 suggests, the calibrated model shows 

reasonable results with RMSE ≤ 0.028 cm3/cm3, R2 ≥ 
0.76, MAE ≤ 0.022 cm3/cm3, -0.027 ≤ CRM ≤ 0.044, 
and nRMSE ≤ 14.4% in both soil layers (0-15, and 15-
30 cm). However, it is seen that the model's 
performance in the second layer (15-30 cm) is, to some 
extent, better. According to the CRM values presented 
in Fig. 2, it is also seen that the model tends to 
underestimate water content in the first layer (0-15 
cm), but negative CRMs in the second layer (15-30 
cm) show an overall overestimation of water content 
in this layer.  

Droogers et al. (2010) assessed the SWAP 
model in two wheat and cotton fields and reported 0.67 
and 0.84 for the coefficient of determination. Ma et al. 
(2015) calibrated the SWAP model in three wheat and 
corn fields and reported RMSE values of 0.013, 0.022, 
and 0.047 cm³ cm⁻³ for RMSE, and 12.8, 14.6, and 
16.5% for nRMSE. Using the SWAP model, Wang et 
al. (2020) conducted a two-year field experiment in 
the Guanzhong Plain of Northwest China, focusing on 
the water dynamics of winter wheat under deficit 
irrigation. The experiment involved three irrigation 
levels (100%, 80%, and 60% of ETa) at four growth 
stages, with a control group receiving sufficient 
irrigation. The verification results demonstrated the 
accuracy of the SWAP model in simulating soil water 
content (average relative error < 21.66%, RMSE < 
0.07 cm³ cm⁻³).  

Khoshsimaie Chenar et al. (2021) assessed the 
SWAP model's performance with three maize hybrids 
and varying irrigation water salinity in Iran. During 
validation, the model demonstrated practical water 
content estimation across three layers (0-20, 20-40, 
and 40-60 cm), yielding RMSE values of 0.03, 0.03, 
and 0.04 cm³ cm⁻³, respectively. It accurately 
predicted soil salinity in the 0-20 cm layer (RMSE = 
0.67 cm³ cm⁻³), but its precision diminished with 
increasing depth (RMSE = 1.16 and 1.19 cm³ cm⁻³ in 
the 20-40 and 40-60 cm layers). 

Discrepancies arise when examining outcomes 
from other studies. Droogers et al. (2010) documented 
a lower coefficient of determination (0.67 and 0.84), 
contrasting with the high R² observed in our study. 
Further comparison with Ma et al. (2015) reveals 
variations in model performance, displaying different 
RMSE and nRMSE values for wheat and corn fields. 
These differences may be rooted in diverse 
environmental conditions, crop types, or specifics of 
model calibration procedures. Wang et al. (2020) 
study in the Guanzhong Plain offers a direct 
comparison, focusing on the water dynamics of winter 
wheat under deficit irrigation. Despite similarities in 
experimental setups, differences in RMSE values 
suggest potential variations in local factors 
influencing soil water dynamics. Comparing our 

results with those of Khoshsimaie Chenar et al. 
(2021), where the model had similar performance in 
all layers, reveals a discrepancy. In our study, 
however, the model exhibited improved performance 
in the second layer (15-30 cm), indicating variations 
in the model's behavior between the two studies. This 
contrast in model behavior suggests variations in 
factors influencing soil water dynamics between the 
two studies, potentially arising from different 
environmental conditions, calibration methodologies, 
or regional specifics.  

In summary, while the conditions of each study 
may impact the accuracy of the results obtained from 
the model, comparing the statistical criteria of this 
study with the values obtained in previous studies 
demonstrates the model's satisfactory precision in soil 
moisture estimation. Consequently, the estimated ET 
rates by the model can be effectively utilized for 
evaluating the SEBAL algorithm. 

MODIS products were used during the 
cropping season to estimate the input data for the 
SEBAL algorithm. For example, Fig. 3 shows the 
spatial distribution of NDVI, surface albedo, land 
surface temperature, sensible heat flux, and net 
radiation flux over the study area on September 22, 
2012. The spatial resolution of the input data for the 
SEBAL algorithm, derived from MODIS products, is 
either 250 meters (NDVI, surface albedo, sensible heat 
flux, and net radiation flux) or 500 meters (land 
surface temperature). These data were used with the 
exact spatial resolution, and no downscaling was 
performed. In this figure., the locations of the two 
fields under study are also presented. 

Figure 4 displays the temporal changes of the 
input data mentioned throughout the cropping season. 
Additionally, Fig. 5 illustrates the spatial distribution 
map of cumulative ETa across the study area, 
generated using the SEBAL algorithm. 

Comparable maps were produced throughout 
the cropping season within the study area. Using the 
calibrated SWAP model, the ETa rates for both CP2 
and CP5 fields were also estimated during cropping 
season. The scatter plot between all the ETa rates 
estimated by the SWAP model and the ones estimated 
by the SEBAL algorithms is shown in Fig. 6. As Fig. 
6 suggests, there is a linear relationship between two 
data sets (R2 = 0.67); however, the SEBAL algorithm 
has a clear tendency to underestimate ETa. RMSE, R2, 
MAE, CRM, and nRMSE values are also presented in 
Table 2. RMSE and nRMSE values are relatively high, 
suggesting the methods have different performances. 
A negative value of CRM shows that the values 
generated by SWBAL are generally greater than those 
generated by SWAP. Fig. 7 compares SEBAL and 
SWAP ETa rates during cropping season. As it seen, 
the output of SEBAL for some days is zero, indicating 
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that the algorithm is not applicable on cloudy days. 
Fig. 6 suggests that SEBAL and SWAP follow a 

similar temporal pattern; however, the overestimation 
of SEBAL is apparent. 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

 
Fig. 3. Spatial pattern of surface albedo, land surface temperature (K), NDVI, sensible heat flux (W/m2), 
and net radiation flux (W/m2) over the study area on September 22, 2012: (a) NDVI, (b) Surface albedo, 

(c) Land surface temp., (d) Sensible heat flux, (e) Net radiation flux 

NDVI Surface albedo 

Land surface temp. Sensible heat flux 

Net radiation flux 
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(a) (b) 

  
(c) (d) 

 
(e) 

 
Fig. 4. Temporal variation of surface albedo, NDVI, land surface temperature, sensible heat flux, and net radiation 

in the study area over cropping season: (a) , (b) , (c) , (d) , (e)  
 

 
 

Fig. 5. Spatial pattern of cumulative ETa (mm) estimated by SEBAL over the study area 
 

Cumulative actual evapotranspiration (mm) 
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Fig. 6. Comparison between all ETa rates estimated using the SEBAL algorithm 
and the ones estimated by the calibrated SWAP model 

 
Table 2. Summary statistics comparing the overall performance of SEBAL in comparison to the SWAP model 

 
RMSE (mm/day) R2 MAE CRM nRMSE (%) 

2.3 0.67 0.937 -0.139 44.2 
 

 

 
Fig. 7. Comparison between the temporal variations of ETa rates estimated using the SEBAL algorithm 

and the ones estimated by the calibrated SWAP model 
 

Awada et al. (2021) utilized the SEBAL model 
on Landsat images (2009-2014) over a Mediterranean 
maquis in Sardinia, Italy. Comparing SEBAL with 
tower data indicated robust estimations (R2 = 0.77, 
RMSE = 0.05, MAE = 0.076). Their conclusion 
supported SEBAL's satisfactory performance, 
emphasizing its potential to understand ET dynamics 
in complex ecosystems for broader environmental and 
hydrological applications. In a separate study, Chen et 
al. (2023) applied SEBAL in the Shiyang River Basin, 
northwest China, for the 2020 growing season. Results 
demonstrated a good correlation with Penman-
Monteith-derived data (R2 = 0.85) but noted slight 
overestimation compared to MODIS ET. Ma et al. 
(2023) proposed Y-SEBAL, a surface energy balance 
model built upon SEBAL with improved sensible heat 
flux calculation. The introduction of an empirical 
formula for sensible heat flux in Y-SEBAL addresses 
limitations present in SEBAL. The researchers 
demonstrated the model's efficacy in accurately 
simulating regional ET, validated against eddy 
covariance data (R = 0.82, agreement index = 0.90, 
RMSE = 0.81 mm·d⁻¹). Their conclusion highlights Y-
SEBAL's capacity to enhance simulation 

performance, presenting a novel remote sensing-based 
regional ET retrieval solution. 

The observed differences in estimating ETa 
among studies can be attributed to several key factors. 
Firstly, environmental variability plays a crucial role, 
as studies are often conducted in diverse geographical 
locations with distinct climates, soil types, and overall 
environmental conditions. These variations introduce 
unique challenges for the models in capturing the local 
intricacies of water dynamics. Secondly, the types of 
crops and land cover present in the study areas 
contribute to disparities. Different vegetation types 
and land cover characteristics have distinct impacts on 
the energy and water balance, influencing the 
accuracy of models in estimating ET. 

Furthermore, variations in model calibration 
procedures add another layer of complexity. 
Calibration involves adjusting model parameters to 
align with observed data. Differences in calibration 
methods, the quality of input data, and the specificities 
of the calibration process can contribute to variations 
in model performance across studies. 

The benchmark employed in the present study 
for evaluating ETa rates is derived from a calibrated 

 

SWAP SEBAL
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SWAP model. It is crucial to note that this differs from 
benchmarks used in other studies, such as Awada et al. 
(2021) utilizing tower data in a Mediterranean maquis 
in Sardinia, Italy, and Chen et al. (2023) using 
Penman-Monteith-derived data in the Shiyang River 
Basin, northwest China. Whether model-derived or 
measured through alternative methods, the choice of 
benchmarks introduces variations in the comparative 
assessment of model performance. These 
discrepancies highlight the importance of considering 
the specific benchmark sources and methodologies 
when interpreting and comparing results across 
different studies. Considering these factors, it 
becomes evident that the differences in environmental 
conditions, land cover, and calibration approaches 
collectively contribute to the differences observed in 
the results of studies utilizing models like SWAP and 
SEBAL for estimating ETa. 
 
4. Conclusions 
 

The primary inquiry of this study was whether 
remote sensing-derived ETa data can be confidently 
applied for agricultural irrigation planning and 
management. Addressing this question and evaluating 
the ETa derived from remote sensing requires 
assessing these data against a ground truth benchmark. 
In this study, due to the absence of lysimeter data on 
ETA in the study area (the Hezar-Jolfa Agro-Industrial 
Complex, Qazvin, Iran), the SWAP model was 
utilized to obtain accurate data on ETa. Initially, this 
model was validated using observational data on soil 
moisture. Given the model's precision in estimating 
soil moisture, it was concluded that the ETa derived 
from the SWAP model can be considered a suitable 
benchmark. 

The SWAP model demonstrated satisfactory 
precision in estimating soil moisture content across 
different soil layers through calibration and validation 
processes. The study established the model's 
credibility in simulating soil water dynamics in the 
region by comparing error metrics such as RMSE, R2, 
MAE, CRM, and nRMSE with those reported in 
previous studies. Despite tending to underestimate 
ETa, the SEBAL algorithm's performance was 
assessed against the calibrated SWAP model, 
revealing a linear relationship between the two 
datasets. The R2 value between ETa from SWAP and 
SEBAL was calculated as 0.67, indicating a moderate 
level of correlation between the two methods.  

One of the limitations of this study has been the 
constraint related to ground data acquisition. 
Additionally, in some instances where ground data 
were available, due to the cloudy weather conditions 
in the study area, SEBAL may not have performed 
optimally. 

Considering the advantages of remote sensing 
data, such as high spatial resolution and ease of access, 
assessing other existing methods for extracting ETa 
from remote sensing measurements and comparing 
them with SEBAL could be a significant topic for 
future studies. These evaluations can contribute to 

examining the accuracy, precision, and reliability of 
various methods in estimating ETa. 
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