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Abstract 
 
Land cover is a significant input to hydrological models, and its features may affect model performances. To evaluate its impact on 
evapotranspiration, surface runoff, and water yield, we tested six open-source LULC data products (GLCC, GLC 2000, GlobCover 
2005, GLCNMO V1, CLC 1990, and PELCOM) in the Emet-Orhaneli Basin located in western Anatolia. The Soil and Water 
Assessment Tool (SWAT) was employed to assess hydrological responses. Following the model calibration with observed 
streamflow data, the changes in outputs over the 1980-2012 period were compared temporally and spatially. The results revealed 
that temporal and spatial changes in evapotranspiration (up to 2%) and water yield were slight (up to 7%), whereas surface runoff 
varied more significantly in monthly and interannual intervals. The surface runoff values varied up to 70% for different LULC data 
in the basin scale and more distinct variations at the subbasin scale. The surface runoff values were highest (80.92 mm) in the case 
of using GLCC and lowest (48.13 mm) in PELCOM case. We concluded that the LULC data is crucial for estimating surface runoff 
and peak flow, while it is less effective in estimating evapotranspiration and total water yield. Our results may guide hydrologic 
modellers in selecting LULC data for specific conditions and purposes. 
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1. Introduction 

 
Land cover refers to the physical and biological 

material that covers the Earth's surface while land use 
defines the type and intensity of human activities 
occurring in a particular location (LaGro, 2005). Land 
use land cover (LULC) data can be collected using 
specific technologies such as satellite images, aerial 
photographs, sensors, and other tools. These data are 
processed and analyzed through geographic 
information systems (GIS) software (Bey et al., 2016). 
LULC data is an essential input for simulations of 
processes such as water quantity and quality in 
hydrological systems (Dwarakish and Ganasri, 2015). 
Especially physical-based watershed models, it is 
critical to accurately define the land use characteristics 
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of the basin in the model for the reliability of the 
results. Field measurements can be conducted to 
acquire data on soil or land use (Georgakakos and 
Baumer, 1996; Oruç et al., 2022; Yan et al., 2015). 
However, these measurements are laborious and 
costly (Gibbs et al., 2007). For this reason, data sets 
produced on a global or regional-scale using remote 
sensing methods are available on various platforms 
(Grekousis et al., 2015). The reliability of these data 
sets and their uncertainty is an important concern in 
modeling studies. Therefore, examining the potential 
effect of these datasets, which should be accurately 
defined in watershed models, on the hydrological 
results in the local regions is quite important. 

Publicly available LULC data is provided by 
many institutions such as the United States Geological 
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Survey (USGS), Food and Agriculture Organization 
(FAO), European Environment Agency (EEA), and 
International Union for Conservation of Nature 
(IUCN). These datasets are obtained using satellite 
images with different spatial and temporal resolutions. 
Grekousis et al. (2015) presented a large-scale survey 
of LULC data generated at 21 global and 43 regional-
scales. Accordingly, Global Land Cover 
Characterization (GLCC) (Loveland et al., 2000), 
Global Land Cover 2000 (GLC 2000) (Bartholomé 
and Belward, 2005), GlobCover (Bicheron et al., 
2008) and the Global Land Cover by National 
Mapping Organizations (GLCNMO) (Tateishi et al, 
2011), as well as Coordination of Information on the 
Environment (CORINE) (Buttner et al., 1998) and the 
Pan-European Land Cover Monitoring Project 
(PELCOM) (Mücher et al., 2000) are some of the 
frequently used public global- and European-scale 
datasets. These six datasets are classified by different 
classification systems according to their purpose and 
are stored at different spatial resolutions. Even if 
different global- and European-scale LULC input data 
for hydrological modeling are successfully used for 
different purposes, the suitability or applicability of 
these global products to simulate hydrology cannot be 
guaranteed. Geological and environmental differences 
between regions require detailed investigation and 
accuracy assessment when using remote sensing data 
(Alawi and Ozkul, 2023). For this reason, these 
products should be tested and evaluated in order to 
understand their effect on hydrological outputs. 

In recent years, numerous GIS-based 
watershed modeling tools, employing LULC data 
through mathematical equations to describe 
hydrological processes, have been introduced. Among 
them, SWAT (Arnold et al., 1998) is a semi-
distributed process model used worldwide (Aloui et 
al., 2023; Gassman et al., 2007). Global-scale land use 
data has been successfully used in many SWAT 
applications (Abbaspour et al., 2019; Ali et al., 2023; 
Peker and Gulbaz, 2023). Several studies have 
examined the effects on model outputs using different 
LULC data with a hydrological model (Busari et al., 
2021; Chirachawala et al., 2020; Huang et al., 2013; 
M'Barek et al., 2023; Romanowicz et al., 2005). In a 
study conducted by El-Sadek and Irvem (2014), three 
different LULC data (GLCC, GlobCover, and 
CORINE) were used in the SWAT model. Their 
results indicated that the SWAT model was sensitive 
to the LULC input data. In another study, two different 
LULC data produced by CORINE and LANDSAT 7 
ETM were examined with SWAT (Cuceloglu et al, 
2021). Although the authors observed that both data 
yielded similar results in streamflow simulations, 
spatial differences were reported at the subbasin-scale.  

The present study's main objective is to 
examine the effects and applicability of six different 
LULC datasets on the hydrological responses. The 
Emet and Orhaneli Basin in Türkiye, characterized by 
a significant presence of forests, was selected as the 
study area for this research endeavor. Recent studies 
have relied on watershed modeling to investigate the 

substantial influence of forested areas on surface 
runoff (Ding et al., 2022; Li et al., 2020; Luo et al., 
2020; Zhang et al., 2020). These studies consistently 
reveal that a reduction in forest cover leads to 
increased runoff, whereas afforestation has the 
opposite effect. The current study focuses on assessing 
the impact of global Land Use and Land Cover 
(LULC) data, utilized as input for a hydrological 
model, on surface runoff within a watershed 
predominantly covered by forests. First, separate 
models were set up using SWAT with six various 
LULC datasets (GLCC, GLC 2000, GlobCover 2005, 
GLCNMO V1, CLC 1990 and PELCOM). Each 
individual model was calibrated for streamflow. 
Second, the hydrological responses 
(evapotranspiration, surface runoff, water yield) were 
evaluated temporarily and spatially for each model. 
Within this context, monthly and annual changes in 
mean evapotranspiration (ET), surface runoff 
(SURQ), and water yield (WYLD) values obtained 
during the simulation period of 1980-2012 were 
investigated. In addition, variations in the average 
values at the subbasin-scale were obtained, and the 
spatial variations in model results were determined. 
As a result, the hydrological responses of six LULC 
input data on model simulations were compared and 
presented. 
 
2. Materials and methods 
 
2.1. Study area and data 
 

Emet-Orhaneli is a subbasin of the Susurluk 
Basin, one of Türkiye's 25 major basins (Fig. 1). The 
Emet and Orhaneli streams, which form the basin 
unite, merge to form Mustafa Kemal Pasa River, and 
drain into Uluabat Lake. The drainage area of this 
basin is 9537 km2. The mean elevation is 
approximately 1042 m and ranges from 20 m (at the 
outlet part) to 2072 m (in the high parts of Murat 
Mountain where the Orhaneli Stream originates). The 
average slope is approximately 18%. Although the 
LULC classes of the basin vary in the data from 
various sources, it is mostly covered with agricultural 
lands, forests, and range lands. C-type alluvial soil is 
dominant in the basin. 

Geospatial (elevation, LULC, and soil type) 
and meteorological (precipitation, max/min 
temperature, relative humidity, solar radiation, wind 
speed) input data are required to create a hydrological 
model base. The 90 m resolution Shuttle Radar 
Topography Mission (SRTM) (Jarvis et al., 2008) 
provided by the National Aeronautics and Space 
Administration (NASA) and 1:5000000 scale Digital 
Soil Map of World (DSMW) 
(http://www.fao.org/geonetwork/srv/) data provided 
by FAO were used for elevation and soil type data, 
respectively. 

LULC data obtained from six various sources 
were used in the current study. These datasets were 
GLCC, GLC 2000, GlobCover 2005, GLCNMO V1, 
CLC 1990, and PELCOM. The characteristics of the 
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land use data are summarized in Table 1. For 
meteorological data, Climate Forecast System 
Reanalysis (CFSR) (Fuka et al., 2014), which is 
widely used in SWAT studies (Tan et al., 2021) was 
used. This data includes daily precipitation, 
maximum/minimum temperature, relative humidity, 
solar radiation, and wind speed.  
 
2.2. Analysis and classification of the LULC data 

 
The LULC products from GlobCover, 

GLCNMO, and CLC datasets capture different 
periods. GlobCover provides separate data versions 
for 2005 and 2009, GLCNMO for 2003 (V1), 2008 
(V2), and 2013 (V3), and CORINE offers distinct data 
versions for CLC (CORINE Land Cover) in 1990, 
2000, 2006, 2012, and 2018. In the current study, 
versions of GlobCover 2005, GLCNMO V1, and CLC 
1990 were used to represent the model period of the 
datasets. The properties of the selected LULC data are 
given in Table 1. Six various LULC maps used for 
comparison are shown in Fig. 2. The distribution of 

LULC classes obtained for these data is shown in Fig. 
3 as areal percentages. In all datasets, three 
predominant classes were observed in the Emet-
Orhaneli Basin: agricultural areas, forests, and ranges. 
These three classes spatially varied among different 
data. The GLCC data identified agricultural areas in 
approximately 87% of the basin, whereas PELCOM 
indicated a brushes coverage of 70%. In contrast, the 
GlobCover 2005 data revealed that approximately 
71% of the total basin area was covered by forests. In 
the GLC 2000, GLCNMO V1 and CLC 1990 data, 
none of the categories-agriculture, forest, and range-
demonstrated dominance in terms of coverage or 
representation. The study results compare the effects 
of six different LULC data on the model results in their 
classification formats. Six various LULC data are 
classified with diverse types of details, reflecting their 
unique nature and intended applications. The 
representation of these classification formats in the 
hydrological model for the basin in this study exhibits 
variations. In this context, six different models were 
created and calibrated for six different data. 

 

 
 

Fig. 1. Location and boundary of Emet-Orhaneli Basin 
 

Table 1. Properties of LULC data 
 

Scale LULC data Spatial 
resolution Time span Satellite Classification system Producer 

 

G
LO

B
A

L 

GLCC 1 km 1992-1993 AVHHR1 IGBP2 

17 classes USGS, UNL3  

GLC 2000 1 km 1999-2000 SPOT4 4 FAO LCCS5 
22 classes JRC6  

GlobCover 2005 300 m 2004-2006 MERIS FR7 FAO LCCS 
22 classes ESA8  

GLCNMO V1 1 km 2003 MODIS9 FAO LCCS 
22 classes ISCGM10  

EU
R

O
PE A
N

 CLC 1990 100 m 1986-1999 Landsat 4,5 TM 5 main classes EEA  
PELCOM 1 km 1995-1999 AVHRR 16 classes JRC  

1AVHRR: Advanced Very High-Resolution Radiometer, 2IGBP: The International Geosphere–Biosphere Programme, 3UNL: University of 
Nebraska-Lincoln, 4SPOT: Satellite Pour l'Observation de la Terre, 5LCCS: Land Cover Classification System, 6JRC: Joint Research Center,  
7MERIS FR: The Medium Resolution Imaging Spectrometer Full Resolution, 8ESA: European Space Agency, 9MODIS: Moderate Resolution Imaging 
Spectroradiometer, 10ISCGM: International Steering Committee for Global Mapping 

 

 1153 



 
Peker et al./Environmental Engineering and Management Journal 24 (2024), 6, 1151-1162 

 

 
 

Fig. 2. General view of (a) GLCC, (b) GLC 2000, (c) GlobCover 2005, (d) GLCNMO V1, (e) CLC 1990, (f) PELCOM data 
 

 
 

Fig. 3. LULC data classification with SWAT codes 
 
2.3. Hydrological modeling 
 

The SWAT (Soil and Water Assessment) 
model is a deterministic, semi-distributed, process-
based watershed model developed by the USDA 
(United States Department of Agriculture) (Arnold et 
al. 1998; Bieger et al. 2016; Neitsch et al. 2011). The 
model has a wide range of applications, including flow 
and nonpoint source pollution modeling in changing 
environments. On the other hand, the simplification of 
flow routing through a modified rational method and 

determination of peak runoff rate with an empirical-
type rational formula result in the incapability of 
detailed flood routing for single events. The 
hydrological simulation of a watershed involves two 
major divisions in SWAT. The first part is the land 
phase of the hydrologic cycle (Fig. 4), which regulates 
the quantities of water, sediments, nutrients, and 
pesticides transported to the main channel in each 
subbasin. The second part is the water or routing phase 
of the hydrologic cycle, addressing the movement of 
water, sediments, nutrients, pesticides, etc., through 
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the channel network of the watershed to the outlet 
(Neitsch et al., 2011) (Eq. 1). 
 

0
1

( )
t

t day surf seep gw
i

SW SW R Q E W Qα
=

= + − − − −∑       (1) 

 

where: SWt is the final soil water content (mm), SW0 is 
the initial soil water content on day i (mm), t is the time 
(days), Rday is the amount of precipitation on day i 
(mm), Qsurf is the amount of surface runoff on day i 
(mm), Eα is the amount of evapotranspiration on day i 
(mm), wseep is the amount of water entering the vadose 
zone from the soil profile day i (mm), and Qgw is the 
amount of return flow on day i (mm). 

In SWAT, surface runoff was estimated by the 
SCS-CN method, which depends on land use and soil 
type characteristics (Eqs. 2-3) (Neitsch et al., 2011). 
 

2( )
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day a
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day a
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−

=
− +

                                         (2) 

 

100025.4( 10)S
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= −                                                       (3) 
 

where: Qsurf is the accumulated runoff or rainfall 
excess (mm), Rday is the rainfall depth for the day 
(mm), Ia is the total of all the initial abstractions 
(which include surface storage, interception and 
infiltration prior to runoff (mm), S is the retention 
parameter (mm) and CN is the curve number for the 
day.  

In the model, the basin area is first divided into 
subbasins based on topography, and each subbasin is 
then divided into hydrological response units (HRU) 
according to slope, LULC, and soil type 
characteristics (Neitsch et al., 2011). The basin in all 
models was separated into 43 subbasins using the 
automatic basin delineation option in SWAT based on 
the digital elevation model. The lowest subbasin 
threshold area was selected as 100 km2. Each subbasin 
was further divided into five elevation bands to 
increase the representation of elevation-related 
variations. The slope was divided into three classes as 
<5%, 5-15%, and >15%. To create HRUs, no 
threshold values were defined for slope, land use, and 
soil type variables. The models were run between 
1979 and 2012, depending on the data periods of the 
CFSR and the streamflow observation station. Also, 
Penman-Monteith (Monteith, 1965) method was used 
for ET calculation in the model. The latest version of 
ArcSWAT 2012.10.26 version, which can run on 
ArcGIS/ArcMap 10.8, was used as the modeling tool 
to perform these calculations. In the models created, 
only the LULC data (GLCC, GLC 2000, GlobCover 
2005, GLCNMO V1, CLC 1990, and PELCOM) were 
modified, and all other model conditions were kept 
constant. 

LULC data with different classifications were 
used in modeling. Model-specific codes must be 
defined to identify LULC data in SWAT. For this 
reason, the classifications of these data were matched 
in accordance with SWAT-specific LULC codes and 

inputted the model. The nearest features for the 
relevant LULC class were considered for these 
classifications. The number of classes in these 
categorizations performed with the same procedure is 
variable for each data. 

Considering the CFSR data covering 1979-
2012, the model calibration period was determined as 
1980-2000 (21 years), and the validation period as 
2001-2012 (12 years). The data obtained by E03A002 
streamflow observation station located at the basin 
outlet were used for the observed flow values in these 
periods. These data are open source and can be 
accessed from the annals of Turkish State Hydraulic 
Works (DSI). In all models, 1979 (1 year) was run as 
the warming year. Sequential Uncertainty Fitting - 
Version 2 (SUFI-2) Latin Hypercube Sampling (LHS) 
algorithm (McKay et al., 1979), which is included in 
the public version of the SWAT-Calibration and 
Uncertainty Program (SWAT-CUP) (Abbaspour et al., 
2004, 2007) was used for the calibration process. 
Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 
1970). metric was considered the algorithm's objective 
function. Each model established with different LULC 
data was examined by running 300 simulations with 
the same parameters and the initial value ranges of 
these parameters. The parameters, descriptions, units 
and initial value ranges used in the calibration are 
shown in Table 2. The calibrated parameters obtained 
were run for the validation period, and the models 
were validated for different periods. 

In Fig. 5, the flowchart of study is depicted, 
offering a concise representation of the connections 
between inputs, the hydrological model framework, 
calibration, and outputs. 
 
3. Results 
 

In the analysis, six different LULC data were 
compared for two aspects: first, the streamflow 
calibration and validation based on the gauge data at 
the basin outlet were compared according to the 
success metrics. At this step, the trendy conditions and 
visual harmony in the hydrographs were also 
examined. Secondly, monthly and annual average 
values of three important hydrological cycle 
components (ET, surface runoff, and water yield) of 
the model results were compared for the given period. 
In the second part of the study, comparisons were 
evaluated as temporal values for the study period and 
spatially at the subbasin-scale on average. 
 
3.1. Streamflow calibration and validation results 
 

Streamflow results obtained by the models 
built with six different LULC data with their different 
classifications were calibrated based on the gauge 
data. NSE was considered the objective function in the 
calibrations. In addition, the coefficient of 
determination (R2) and Kling-Gupta Efficiency 
(KGE) (Gupta et al., 2009) metrics were also 
compared. Depending on the characteristics of the 
parameters, the suitable set is obtained by modifying 
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them through either relative or direct replacement. The 
fitting values of parameters with obtained by the 
calibrations are given in Table 2. Among these 
parameters, CN2 and SOL_AWC show relative spatial 
variability in HRUs (denoted by r_). Others are direct 
change of parameter values (denoted by v_). For 
example, for each model of LULC data, there is a -
0.09% difference between the CN2 initial value and its 
calibrated value. Thus, at the basin average, the initial 
and calibrated values of CN2 are 80.90 and 73.62 for 
GLCC, 79.19 and 72.06 for GLC 2000, 79.61 and 
72.44 for GlobCover 2005, 78.71 and 71.63 for 
GLCNMO V1, 79.79 and 72.61 for CLC 1990, and 
76.69 and 69.79 for PELCOM. While the calibrated 
CN2 value is the same relative decrease in all models, 
physical values vary depending on LULC and soil 
groups. Additionally, six interrelated groundwater 
process parameters were identified as sensitive 
parameters in the calibration process. This result is 
similar to studies conducted in the literature 
(Abbaspour et al., 2015; Akbaş et al., 2020). The 
complexity and uncertainty in groundwater processes, 
which are difficult to observe, may make these 

parameters more effective in the model. 
Consequently, the results of the calibration and 
validation of six different models are given in Table 3. 

Fig. 6(a) exhibits the simulated and observed 
streamflow values throughout the simulation period of 
1980-2012. Hence, simulations conducted during both 
the calibration and validation periods may 
demonstrate similarity and have a closely related 
trend. While the timing of the peaks in streamflow is 
consistent for the entire model period, there are 
differences in the peak flow amounts according to the 
observation values. In this case, peak flows in SWAT 
simulations are generally higher than observation 
values. Fig. 6(b, c) show hydrographs in the randomly 
selected water year 1981 and 2002 which was chosen 
for detailed examination, respectively. The dashed 
black line depicts the observation flow. The 
simulation lines are tightly grouped together, with the 
red lines having relatively higher values indicating the 
GLCC data and the green lines at the lower values 
representing the GlobCover 2005 data. In both figures, 
the values for ascent and descent are nearly coincident, 
with only minor disparities in peak values. 

 

 
 

Fig. 4. Schematic representation of the hydrologic cycle in SWAT model (modified from Neitsch et al., 2011) 
 

 
 

Fig. 5. Flowchart of the study 
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Table 2. Descriptions, ranges, and fitted values of the sensitive parameters 

 

Parameters Description Unit Range Fitted Value Min Max 
v_TLAPS Temperature lapse rate oC -8 -4 -4.18 
v_SFTMP Snowfall temperature oC -3 3 0.17 
v_SMTMP Snowmelt base temperature oC -3 3 -0.51 
v_SMFMX Melt factor for snow on June 21 mm H2O/oC-day 3 6 3.21 
v_SMFMN Melt factor for snow on December 21 mm H2O/oC-day 0 3 1.69 

v_TIMP Snowpack temperature lag factor unitless 0 1 0.08 
r_CN2 SCS runoff curve number unitless -0.2 0.2 -0.09 

r_SOL_AWC Available water capacity of the soil layer mm H2O/mm -0.2 0.2 -0.18 
v_ESCO Soil evaporation compensation factor unitless 0.7 1 0.73 

v_GW_DELAY Groundwater delay time days 0 100 12.5 
v_ALPHA_BF Baseflow alpha factor days 0 1 0.46 
v_RCHRG_DP Deep aquifer percolation fraction unitless 0 0.2 0.18 
v_GW_REVAP Groundwater "revap" coefficient unitless 0 0.2 0.17 

v_REVAPMN Threshold depth of water in the shallow aquifer for 
"revap" to occur mm H2O 0 500 89.17 

v_GWQMN Threshold depth of water in the shallow aquifer for 
return flow to occur mm H2O 0 5000 1641.67 

* The term “r_” is used for the relative adjustment of a parameter within a given range and the term “v_” means directly replacing the parameter 
value with the assigned value. 

 
Table 3. Performance metrics of SWAT for flow calibration and validation (NSE, R2, KGE) 

 

Land use data 
Calibration (1980-2000) Validation (2001-2012) 

NSE R2 KGE NSE R2 KGE 
GLCC 0.61 0.74 0.73 0.28 0.61 0.55 

GLC 2000 0.65 0.75 0.77 0.58 0.69 0.75 
GlobCover 2005 0.66 0.75 0.78 0.61 0.70 0.78 
GLCNMO V1 0.65 0.75 0.77 0.50 0.67 0.69 

CLC 1990 0.65 0.75 0.77 0.50 0.66 0.69 
PELCOM 0.64 0.74 0.77 0.61 0.70 0.78 

 

 
 

Fig. 6. Hydrographs (a) in the modelling period between 1980-2012, (b) for 1981, (c) 2002 water year 
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3.2. Monthly and annual change of ET, surface runoff, 
and water yield 

 
Figure 7 shows the changes in the mean 

monthly ET, surface runoff, and water yield values in 
the given period. Accordingly, various LULC data 
sources were compared with different their 
classification details. In addition, the observational 
streamflow data measured at the basin outlet for water 
yields were compared with the model results. 

Table 4 gives the mean annual values of three 
hydrological cycle components as well as the 
precipitation. The evapotranspiration/precipitation 
(ET/PREC), surface runoff/precipitation 
(SURQ/PREC), and water yield/precipitation 
(WYLD/PREC) ratios for different LULC data in the 
entire period are presented. 

According to Table 4, the variations in the 
SURQ/PREC ratio are more noticeable compared to 
others. In this case, it would be meaningful to 
elaborate the spatial changes in surface runoffs. Fig. 8 
presents the spatial variations in the mean annual 
surface runoff values, as well as the mean 
precipitation, at the subbasin scale. Moreover, Fig. 9 
was designed with the intention of providing a clearer 
representation of the variations in surface runoffs at 
the subbasin scale. In Fig. 9(a), the average values of 
each subbasin are depicted for the six LULC datasets. 
Additionally, Fig. 9(b-g) illustrate the deviations of 
surface runoffs for each LULC dataset compared to 
the average values. This visual approach enables a 
more distinct observation of the disparities in surface 
runoffs among the different LULC data. 

Figure 10 exhibits box and whisker plots for 
each LULC data, providing a statistical visualization 
of mean surface runoff (SURQ) values in subbasins. 
By utilizing this graphical representation, it is possible 
to examine the minimum, maximum, median, and 
interquartile range (25th and 75th percentiles) values 
of the SURQ results for each LULC data across 43 
subbasins. This allows for a comprehensive statistical 
analysis of the data distribution and variability. From 
a statistical perspective, Fig. 10 provides an overview 
of the surface runoffs in 43 sub-basins by displaying 
key statistical measures such as the minimum, lower 
quartile (25th percentile), median (50th percentile), 
upper quartile (75th percentile), and maximum values. 
These measures allow for a comprehensive analysis of 
the data distribution and can be compared alongside 
the average values to gain further insights into the 
variability of surface runoffs within the subbasins 
 
4. Discussion 
 

The Emet-Orhaneli Basin consists of 
agricultural lands, forests, and ranges. However, there 
were differences in ratios of LULC classes among data 
sources (Figs. 2-3) to affect hydrological responses of 
the calibrated models. Accordingly, three different 
discussions are made based on the results: first, the 
performance metrics (NSE, R2, and KGE) were 

compared according to the observed streamflow data 
for the whole basin outlet. Second, mean monthly and 
annual ET, surface runoff, and water yield 
distributions were evaluated over the entire study 
period (1980-2012). Finally, spatial changes in surface 
runoff values were observed at the subbasin-scale. 

In agreement with previous studies 
(Chirachawala et al., 2020; Cuceloglu et al, 2021; El-
Sadek and Irvem, 2014; M’Barek et al., 2023), the 
calibrated stream flow (water yield) results in this 
study showed minimal variations when employing 
different LULC data. This result was demonstrated in 
this study for six various LULC data, two of which had 
not been tested before (GLCNMO V1 and PELCOM). 
All datasets showed above acceptable calibration 
performance (Moriasi et al., 2007). Results were 
evaluated with the NSE metric, which is a widely used 
metric in determining model performance. 
Accordingly, a slightly better calibration result 
according to NSE was obtained with GlobCover 2005 
(0.66) and the worst performance was obtained with 
GLCC (0.61) data. Calibration results of other data 
varied between 0.64 and 0.65.  

In the validation period, however, the metric 
values decreased, and the GLCC data had an NSE 
value below 0.50. The poor performance of the GLCC 
data in terms of NSE value may be attributed to factors 
such as the aggregation of LULC classes and the low 
resolution of the dataset (El-Sadek and Irvem, 2014; 
Romanowicz et al., 2005). However, the relatively 
better performance of other coarse resolution data 
suggests that resolution alone may not be the primary 
reason for the GLCC performance. In addition to the 
evaluation of performance metrics, hydrograph trends 
were found to be very close to each other. As an 
example, slight differences can be observed in the 
peak conditions of the 1981 and 2002 water years (Fig. 
6 b-c). The GLCC had a higher peak value than the 
other datasets, however, no particular trend 
differences were found throughout the entire study 
period. However, the use of low-resolution LULC data 
could be more desirable since it offers the advantage 
of minimizing processing and calibration efforts 
(M’Barek et al., 2023). 

For annual and monthly means in the 
simulation period, ET and water yield showed almost 
similar trends for all LULC data, while the surface 
runoff values were relatively different. Moreover, the 
water yield values were above the observations 
(overestimation) in all datasets (Fig. 7c). In addition, 
the ET/PREC, SURQ/PREC, and WYLD/PREC 
ratios were in the order of 0.5, 0.1, and 0.2, 
respectively (Table 4). The SURQ/PREC ratio was 
more sensitive to LULC data compared to other ratios 
(ET/PREC and WYLD/PREC). This result indicates 
that different LULC data affect surface runoff more 
than ET and water yield. Fig. 7(b) illustrates that 
GLCC (87% agricultural) had the highest surface 
runoff values, while PELCOM data (70% brushes) 
had the lowest values. The surface runoff values of 
GLCC data are extreme compared to the others. This 
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data stands out from the others due to their 
underrepresentation of forested areas within the basin. 

While the monthly and annual average values 
of the simulations allowed us to interpret the overall 
results for the entire basin, visualizations were made 
to examine the changes in the subbasin-scale. Similar 
to Cuceloglu et al. (2021), spatial differences in 
surface runoff values were more striking compared to 
water yield values. For this purpose, in Fig. 8, surface 
runoff variations were presented at the subbasin-scale. 
Fig. 8 revealed that the GLCC data exhibits a higher 
surface runoff variation than the other datasets. This 
difference in the GLCC data can be caused by the 
distribution of the highly sensitive CN2 parameter in 
the basin, which varies spatially on the basis of HRU. 
When GLCC data was used in the SWAT model, high 
CN values and therefore surface runoff values were 
observed because agriculture dominant HRUs were 
produced.  

On the other hand, low values were observed in 
PELCOM data because HRUs with high brush class 
were produced. In Fig. 9,  the  differences of the data 
from the mean values at the subbasin scale indicate 
that GLCC produces higher surface runoff values and 
PELCOM produces lower values. Hence, it was 
unveiled in which sub-basins the surface runoffs 
deviated from the averages, indicating either higher or 
lower values. The GLCC model subbasins have higher 
than average values (differences of more than 30 mm), 
while the PELCOM has low (differences of less than 
20 mm) extreme values. In the subbasins of 
GlobCover 2005, there are no variations exceeding 20 
mm from the average values, however, there are 
values within the range of 10 to 20 mm that fall below 
the average.  

The subbasins of the other three data (GLC 
2000, GLCNMO V1 and CLC 1990) differ in the 
range of ±10 mm and are closer to the mean values.  

 

Also, in Fig. 10, GLCC appears to have larger 
variability than the other five data. Besides the 
difference in mean value (red dots) and median, box 
and whisker length indicate a wide range in 43 
subbasin surface runoff values for GLCC. 

 
5. Conclusion 

 
The LULC data is a fundamental input of a 

hydrological model. Using global data sources 
simplifies the accessibility and application of this 
input. However, there have been concerns about 
model performances while using these sources due to 
their resolution and compatibility issues. Our results 
revealed that the resolution and classification of the 
LULC layer had only a slight effect on streamflow in 
the basin size we studied. Specifically, the streamflow 
calibration performances for the whole basin outlet 
were comparable and met the acceptable level for all 
datasets (NSE>0.50). GlobCover 2005 data yielded 
slightly better results than the other data in terms of 
streamflow calibration at the whole basin outlet. 

While the temporal and spatial differences in 
the mean monthly and annual ET and water yield 
values were quite small, surface runoff values showed 
relatively larger variability. In particular, the GLCC 
data showed high surface runoff values from the other 
datasets. ET and streamflow (water yield) 
performance of SWAT was not affected by the LULC 
data source; however, surface runoff performance 
changed significantly. The effects at the subbasin 
scale were more apparent.  

We concluded that the choice of LULC data in 
hydrologic modelling with SWAT does not have a 
significant impact on water yield evaluations in the 
basin size we studied. However, it can significantly 
influence hydrologic components such as surface 
runoff to affect sediment and water quality analyses. 
 

 
 

Fig. 7. Mean monthly temporal changes in 1980-2012 for (a) ET, (b) surface runoff, (c) water yield 
 

Table 4. Mean annual results of surface runoff, water yield and ET in the entire modelling period 
 

Data source PREC 
(mm) 

ET 
(mm) 

SURQ 
(mm) 

WYLD 
(mm) ET/PREC SURQ/PREC WYLD/PREC 

GLCC 

777.2 

410.6 80.92 172.61 0.53 0.10 0.22 
GLC 2000 416.2 53.08 161.36 0.54 0.07 0.21 

GlobCover 2005 419.4 50.26 158.11 0.54 0.06 0.20 
GLCNMO V1 414 61.97 165.17 0.53 0.08 0.21 

CLC 1990 413.9 63.96 165.84 0.53 0.08 0.21 
PELCOM 416.6 48.13 159.45 0.54 0.06 0.21 
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Fig. 8. Mean annual spatial changes in (a) precipitation and surface runoff distributions of (b) GLCC,  
(c) GLC 2000, (d) GlobCover 2005, (e) GLCNMO V1, (f) CLC 1990, (g) PELCOM at the subbasin-scale 

 

 
 

Fig. 9. Surface runoff differences from (a) mean values of all LULC data for (b) GLCC, (c) GLC 2000,  
(d) GlobCover 2005, (e) GLCNMO V1, (f) CLC 1990, (g) PELCOM in subbasin scale 

 

 
 

Fig. 10. Box-Whisker plots of surface runoff (SURQ) values for each LULC data in subbasin means 
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