Environmental Engineering and Management Journal, September 2004, Vol.3, No.3, 387-391 http://omicron.ch.tuiasi.ro/EEMJ/

"Gh. Asachi" Technical University of Iasi, Romania

NANOPARTICLES OF CALCINED Ce-Co SUBSTITUTED HYDROTALCITE: CATALYTIC BEHAVIOR FOR THE REDUCTION OF N₂O BY NH₃

Gabriela Carja^{1*}, Marinela Irimia¹, M. Toyota², I.M. Popa¹

¹Technical University "Gh. Asachi" of Iasi, Faculty of Industrial Chemistry, Department of Physical Chemistry, Bd. D. Mangeron 71A, 6600 Iasi, Romania, ²Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan

Abstract

Nanoparticles of Co-Ce mixed oxides derived from substituted layered double hydroxides have been synthesized, characterized and tested as new catalysts in the process of catalytic reduction of N_2O by NH_3 in the presence of oxygen. The preliminary results show that high N_2O conversions are obtained in a wide range of temperatures: at 673 K the N_2O conversion is equal to nearly 50% and reaches a maximum value equal to almost 90% for temperatures higher than 750 K. In comparison, the catalytic sample derived from calcined not substituted hydrotalcite shows a maximum N_2O conversion equal to 40%.

Keywords: Co-Ce substituted layered double hydroxides, mixed oxides, N2O reduction

Author to whom all correspondence should be addressed: e-mail: carja@uaic.ro