Environmental Engineering and Management Journal, December 2004, Vol.3, No.4, 755-760 http://omicron.ch.tuiasi.ro/EEMJ/

"Gh. Asachi" Technical University of Iasi, Romania

PEROVSKITE UTILIZATION AS CATALYSTS IN NO REDUCTION BY SCR-HC IN ABSENCE OF O₂

Liliana Mihaela Abordeoaei^{1*}, Helmut Papp², Ion Balasanian¹

¹ "Gh. Asachi" Technical University, Faculty of Industrial Chemistry, , D. Mangeron Blvd., 71A, Iasi-700050, Romania, ²Institute for Technical Chemistry, University of Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany

Abstract

The present paper is concerned with the preparation, the characterization of the nonstoichiometric perovskite-type oxides $La_{0.92}MnO_3$, $La_{0.7}Ce_{0.3}MnO_3$, $CeMnO_x$ and the study of their catalytic activity in NO reduction by propene. These tests were carried out in a SCR-HC equipment for NO reduction in propene and nitrogen oxide atmosphere without oxygen. The catalysts showed a high catalytic activity in NO reduction, which can be explained by oxygen activation from the interfaces of these structures. $La_{0.92}MnO_3$ perovskite showed only above 350 °C activity for NO reduction with propene while the other two perovskites displayed activity already at lower temperatures. The CeMnO_x perovskite was the most active catalyst with an activity starting at 200 °C and 100 % NO conversion at 450 °C. The values of propene conversion at 450 °C were 52 % for $La_{0.7}Ce_{0.3}MnO_3$, 36 % for $La_{0.92}MnO_3$ and 47 % for CeMnO_x.

Keywords: perovskite, SCR-HC, propene, NO_x

^{*} Author to whom all correspondence should be addressed: e-mail: <u>lchirila@ch.tuiasi.ro</u>