Environmental Engineering and Management Journal

August 2010, Vol.9, No. 8, 1053-1061 http://omicron.ch.tuiasi.ro/EEMJ/

"Gheorghe Asachi" Technical University of Iasi, Romania

MODELING THE THERMAL STABILITY OF THE POLYDIMETHYLSILOXANES/SILICA GREEN COMPOSITES USING NEURAL NETWORKS

Alexandra Nistor^{1,2*}, Silvia Curteanu², Gabriela Lisa², Maria Cazacu¹

¹ "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700050 Iasi, Romania ² "Gheorghe Asachi" Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania

Abstract

This paper presents the development of artificial neural models for predicting the thermal stability of some polysiloxanes/silica composites obtained using an ecological solvent-free reaction. Four polydimethylsiloxane- α , ω -diols with different molar masses have been prepared and reinforced with different contents of silica generated in situ by sol-gel technique. The resulted materials were investigated by thermogravimetric analysis (TGA). In neural modeling, the thermal stability of the polysiloxanes/silica composites was quantified by two temperatures (the initial temperatures of thermal degradation and the temperature corresponding to the maximum degradation rate), as function of reaction conditions: molecular mass of polydimethylsiloxane, concentration of the catalyst and ratio between the reagents. Two feed-forward neural networks were developed and tested, demonstrating the possibility of obtaining accurate results with relatively simple architecture of the networks.

Key words: composites, feed-forward neural networks, polysiloxanes, silica, thermal stability

Received: February, 2010; Revised final: July, 2010; Accepted: August, 2010

Author to whom all correspondence should be addressed: e-mail: anistor@ch.tuiasi.ro